
Compilers: Collected problems

Mike Spivey

Michaelmas Term 2023

1 Lexical and syntax analysis

1.1 In the lecture, we wrote a regular expression to describe decimal and
hexadecimal constants in C, and derived an NFA and a DFA from it. But
there was a white lie, because C forbids decimal constants with a leading
zero, and allows unsigned octal constants that start with a zero and continue
with an arbitrary string of octal digits 0 to 7, a convention beloved of those
ancients who programmed the PDP–11. Thus the string 0293 is not an integer
constant, because the non-octal digit 9 is inconsistent with the leading zero.
Modify the regular expression to reflect this rule, and show what changes
result in the NFA and DFA. 1

1.2 Suppose a lexer is written with one rule for each keyword and a catch-all
rule that matches identifiers that are not keywords, like this:

rule token =
parse

"while" {While }
| "do" {Do }
| "if" { If }
| "then" { Then }
| "else" { Else }
| "end" { End }
. . .

| [’A’–’Z’’a’–’z’]+ { Ident (lexeme lexbuf ) }

Describe the structure of an NFA and a DFA that correspond to this speci-
fication; explain what happens if several keywords share a common prefix.
What data structure for sets of strings does the DFA implicitly contain?

1.3 Lex has the conventions that the longest match wins, and that earlier
rules have higher priority than later ones in the script. These conventions are

1 I’m pretty sure these are not the true rules of C, but can’t bring myself to wade into the C
standard and find out. The exercise is worthwhile independently of that.

Copyright © 1999–2023 J. M. Spivey 1



2 Compilers: Collected problems

if expr1 then
stmts1

elsif expr2 then
stmts2

else
stmts3

end

if expr1 then
stmts1

else
if expr2 then

stmts2

else
stmts3

end
end

Figure 1: Abbreviated syntax for chains of else if’s

exploited in the lexer shown in Exercise 1.2 that recognises both keywords
and identifiers. Would it be possible to describe the set of identifiers that are
not keywords by a regular expression, without relying on these rules? If so,
would this be a practical way of building a lexical analyser?

1.4 In C, a comment begins with ‘/∗’ and extends up to the next occurrence
of ‘∗/’. Write a regular expression that matches any comment. What would be
the practical advantages and disadvantages of using this regular expression
in a lexical analyser for C?

1.5 In Pascal, comments can be nested, so that a comment beginning with (*
and ending with *) can have other comments inside it. What is an advantage
of this convention? Show how Pascal comments can be handled in a lexical
analyser written according to the conventions of ocamllex by using either
recursion or an explicit counter.

1.6 The following productions for if statements appeared in the original
definition of Algol 60:

stmt → basic-stmt

| if expr then stmt

| if expr then stmt else stmt .

Show that these productions lead to an ambiguity in the grammar. Suggest an
unambiguous grammar that corresponds to the interpretation that associates
each else with the closest possible if.

Now consider the ambiguous grammar: because it is ambiguous, a shift–
reduce parser must have a state where both shifting and reducing lead to a
successful conclusion, or a state where it is possible to reduce by two differ-
ent productions. Find a string with two parse trees according to the gram-
mar, and show the parser state where two actions are possible. Describe the
results of shifting and of reducing in this state.

1.7 In the language of Lab 1, if statements have an explicit terminator end
that removes the ambiguity discussed in the preceding exercise. However,
this makes it cumbersome to write a chain of if tests, since the end keyword
must be repeated once for each if. Show how to change the parser from
Lab 1 to allow the syntax shown on the left in Figure 1 as an abbreviation for



1 Lexical and syntax analysis 3

the syntax on the right. An arbitrarily long chain of tests written with the
keyword elsif can have a single end; the else part remains optional. Arrange
for the parser to build the same abstract syntax tree for the abbreviated
program as it would for its equivalent written without elsif.

1.8 One grammar for lists of identifiers contains the productions,

idlist → id

| idlist "," id

(we call this left recursive), and another (right recursive) contains the pro-
ductions,

idlist → id

| id "," idlist

In parsing a list of 100 identifiers, how much space on the parser stack is
needed by shift–reduce parsers based on these two grammars? Which gram-
mar is more convenient if we want to build an abstract syntax tree that is a
list built with cons?

1.9 [part of 2013/1] Hacker Jack decides to make his new programming
language more difficult for noobs by writing all expressions in Polish pre-
fix form.2 In this form, unary and binary operators are written before their
operands, and there are no parentheses. Thus the expression normally writ-
ten b * b – 4 * a * c would be written

– * b b * * 4 a c,

and the expression (x + y) * (x – y) would be written

* + x y – x y.

After a false start, Jack realises that his language design is doomed if any
symbol can be used both as a unary and as a binary operator, so he decides
to represent unary minus by ~.

(a) Give a context free grammar for expressions in Jack’s language, involv-
ing the usual unary and binary operators together with variables and
numeric constants. Explain precisely why the grammar would be am-
biguous if any operator symbol could be both unary and binary.

(b) In order to simplify the parser for expressions, Jack decides to minimise
the number of different tokens that can be returned by the lexical anal-
yser, distinguishing tokens with the same syntactic function by their
semantic values alone. Suggest a suitable data type of tokens for use in
the parser.

(c) Using this type of tokens and a suitable type of abstract syntax trees,
write context free productions with semantic actions for a parser.

1.10 [2011/1 modified] In a file of data about the Oscars, each record
contains a sequence of dates and the name of an actor or actress, like this:

1933, 1967, 1968, 1981, "Katharine Hepburn"

2 so called after the Polish logician Jan Łukasiewicz.



4 Compilers: Collected problems

%token〈year〉 Year
%token〈actor〉Actor
%token Comma

%type〈(year list ∗ actor ) list〉 file
%start file

%%

file : /∗ empty ∗/ { [ ] }
| record file { $1 :: $2 } ;

record : years Comma Actor { ($1, $3) } ;

years :
Year { [$1] }

| Year Comma years { $1 :: $3 } ;

Figure 2: Ocamlyacc grammar for Oscars data

1975, 1983, 1997, "Jack Nicholson"
2011, "Colin Firth"

Figure 2 shows a grammar for such files, for which. ocamlyacc reports a
shift/reduce conflict.

(a) By showing a parser state where the next action is not determined by
the look-ahead, explain why the conflict arises.

(b) Design a grammar for the same language that is accepted by ocamlyacc
without conflicts. Annotate the grammar with semantic actions that
build the same abstract syntax as the grammar shown above.

(c) Can the same language be described by a regular expression over the
set of tokens? Briefly justify your answer.

2 Expressions and statements

2.1 Write a program that finds the integer part of
√
x using binary search,

and test it by initially setting x to 200 000 000. Compile your progrm into
Keiko code, and work out the purpose of each instruction.

2.2 Some machines have an expression stack implemented in hardware,
but with a finite limit on its depth. For these machines, it is important to
generate postfix code that makes the maximum stack depth reached during
execution as small as possible.

(a) Let the SWAP instruction be defined so that it swaps the two top ele-
ments of the stack. Show how to use this instruction to evaluate the
expression 1/(1+x) without ever having more than two items on the
stack.

(b) Prove that if expression e1 (containing variables, constants and unary
and binary operators) can be evaluated in depth d1, and e2 can be eval-



2 Expressions and statements 5

uated in depth d2, then Binop (w, e1, e2) can be evaluated in depth

min (max d1 (d2 + 1)) (max (d1 + 1) d2).

Write a function cost : expr → int that calculates the stack depth that
is needed to evaluate an expression by this method. Show that if e has
fewer than 2N operands, then cost e ≤ N.

(c) Write an expression compiler gen expr : expr → code that generates
the code that evaluates an expression e within stack depth cost e. [Hint:
use cost in your definition.]

2.3 Now consider a machine that has a finite stack of depth N. In order to
make it possible to evaluate expressions of arbitrary size, the machine is also
supplied with a large collection of temporary storage locations numbered 0,
1, 2, . . . . There are two additional machine instructions:

type code = . . .
| Put of int (∗ Save temp (address) ∗)
| Get of int (∗ Fetch temp (address) ∗)

The instruction PUT n pops a value from the stack and stores it in temporary
location n, and the instruction GET n fetches the value previously stored in
temporary location n and pushes it on the stack.

Assuming N ≥ 2, define a new version of gen expr that exploits these
new instructions, and places no limit on the size of expressions. The code
generated should use as few GET and PUT instructions as possible, but you
may ignore the possibility that the source expression contains repeated sub-
expressions. There’s no need to re-use temps, so you can use a different
temp whenever you need to save the value of a sub-expression.

[Hint : optimal code for an expression can be generated by a function

gen : expr → code ∗ int

that returns code to evaluate a given expression, together with the number n
of stack slots used by the code, with n ≤ N. If both e1 and e2 require N slots
then evaluation of Binop (w, e1, e2) will need to use a temporary location.]

2.4 Programs commonly contain nested if statements, so that either the
then part or (more commonly) the else part of an if statement is another if
statement. (The latter possibility can be abbreviated using the elsif syntax
that was the subject of problem 1.6.)

(a) Show the code that is produced for such nested statements by the naive
translation scheme that was described in the lectures and used in Lab 1.
Point out where this code is untidy and where it is significantly ineffi-
cient.

(b) Suggest rules that could be used in a peephole optimiser to improve the
code from part (a), tidying it up and ameliorating any inefficiencies.

(c) Consider the problem of generating equally tidy and efficient code di-
rectly (without using a peephole optimiser), and if possible define one
or more translation functions that produce this code.

2.5 [2013/2] The scalar product machine uses an evaluation stack, but re-
places the usual floating point addition and multiplication instructions with



6 Compilers: Collected problems

a single ADDMUL instruction that, given three numbers x, y and z on the
stack, pops all three and replaces them with the quantity x + y ∗ z. Thus the
expression b ∗ b + 4 ∗ a ∗ c could be computed on this machine with the
sequence

CONST 0
LOAD b
LOAD b
ADDMUL
CONST 0
CONST 4
LOAD a
ADDMUL
LOAD c
ADDMUL

The first ADDMUL instruction computes t1 = 0 + b ∗ b, the second computes
t2 = 0 + 4 ∗ a, and the third computes the answer as t1 + t2 ∗ c. Floating
point addition and multiplication may be assumed commutative but not as-
sociative, and the distributive law does not hold in general.

(a) Suggest a suitable representation for expressions involving addition,
multiplication, constants and (global) variables, and describe in detail a
translation process that produces code like that shown in the example,
using the smallest possible number of instructions.

(b) The designers of the scalar product machine are planning to include
a stack cache whose effectiveness is maximised by keeping the stack
small. The code for b ∗ b + 4 ∗ a ∗ c shown above reaches a stack
depth of 4 just after the instruction LOAD a. If the machine has an
instruction SWAP that exchanges the top two values on the stack, find
an alternative translation of the same expression that never exceeds a
stack depth of 3.

(c) The designers are willing to add other instructions that permute the
top few elements of the stack. Give an example to show that the SWAP
instruction on its own is not sufficient to allow every expression to be
evaluated in the smallest possible stack space. [You may assume that
for each n ≥ 3 there is an expression en with addition at the root that
needs a stack depth of n.]

(d) Suggest an additional instruction that, together with SWAP, allows all
expressions to be evaluated in the optimal depth, and outline an algo-
rithm that generates code achieving the optimum. There is no need to
give code for the algorithm.

2.6 [2012/2] The programming language Oberon07 contains a new form
of loop construct, illustrated by the following example:

while x > y do
x := x – y

elsif x < y do
y := y – x

end



2 Expressions and statements 7

The loop has a number of clauses, each containing a condition and a cor-
responding list of statements. In each iteration of the loop, the conditions
are evaluated one after another until one of them evaluates to true; the cor-
responding statements are then executed, and then the loop begins its next
iteration. If all the conditions evaluate to false, the loop terminates. In the
example, if initially x and y are positive integers, then the loop will continue
to subtract the smaller of them from the larger until they become equal. The
loop thus implements Euclid’s algorithm for the greatest common divisor of
two numbers.

Previous versions of Oberon included a form of loop with embedded exit
statements. The multi-branch while shown above is equivalent to the fol-
lowing loop statement:

loop
if x > y then
x := x - y

elsif x < y then
y := y - x

else
exit

end
end

In general, a loop statement executes its body repeatedly, until this leads to
one of the embedded exit statements; at that point, the whole loop construct
terminates immediately.

(a) Suggest an abstract syntax for both these loop constructs, including the
exit statement, and write production rules suitable for inclusion in an
ocamlyacc parser for the language.

(b) The two kinds of loop are both to be implemented in a compiler that
generates code for a virtual stack machine. Write the appropriate parts
of a function that generates code for the two constructs by a syntax-
directed translation.

(c) Show the code that would be generated by your implementation for the
two examples given above. Assume that x and y are local variables at
offsets −4 and −8 in the stack frame for the current procedure.

(d) The code that is generated for the multi-branchwhile loop is marginally
more efficient than that for the equivalent loop statement. Suggest rules
for inclusion in a peephole optimiser that would remove the difference
in efficiency.

2.7 [2014/1, edited] Some programming languages provide conditional
expressions such as

if i >= 0 then a[i] else 0

which evaluates to a[i] if i >= 0, and otherwise evaluates to zero without
attempting to access the array element a[i].

(a) Suggest an abstract syntax for this construct, and suggest a way of in-
corporating the construct into an ocamlyacc parser for a simple pro-



8 Compilers: Collected problems

gramming language so as to provide maximum flexibility without intro-
ducing ambiguity. Make sure that an expression like

if x then y else p+q

has p+q as a subexpression.

In a compiler for the language, postfix code for expressions is generated by
a function

gen expr : expr → code.

Control structures are translated using a function

gen cond : expr → codelab → codelab → code,

defined so that gen cond e tlab flab generates code that jumps to label tlab
if expression e has boolean value true, and the label flab if it has value false.

(b) Show how to enhance gen expr and gen cond to deal appropriately with
conditional expressions.

It is suggested that short-circuit boolean and could be translated by getting
the parser to treat e1 and e2 as an abbreviation for the conditional expression

if e1 then e2 else false,

expanding the abbreviation in creating the abstract syntax tree.

(c) Show the code that would be generated for the statement

if (i >= 0) and (a[i] > x) then i := i+1 end

according to your translation, assuming both i and x are global integer
variables, and a is a global array of integers. Omit array bound checks.

If the resulting code is longer or slower than that produced by trans-
lating the and operator directly, suggest rules for post-processing the
code so that it is equally good.

3 Data structures

3.1 Assume the following declarations.

type dogptr = pointer to dogrec;
dogrec = record name: array 12 of char; age: integer; next: dog-

ptr; end;

var q: dogptr; s: integer;

The following two statements form the body of a loop that sums the ages in
a linked list of dogs.

s := s + q↑.age;
q := q↑.next

Show Keiko code for these two statements, omitting the run-time check that
q is non-null.



3 Data structures 9

3.2 A small extension to the language of Lab 2 would be to allow blocks with
local variables. We can extend the syntax by adding a new kind of statement:

stmt → local decls in stmts end

For example, here is a program that prints 53:

var x, y: integer;
begin
y := 4;
local
var y: integer;

in
y := 3 + 4; x := y * y

end;
print x + y

end.

As the example shows, variables in an inner block can have the same name
as others in an outer block. Space for the local variables can be allocated
statically, together with the space for global variables. Sketch the changes
needed in our compiler to add this extension.

3.3 A certain imperative programming language contains a looping con-
struct that consists of named loops with exit and next statements. Here is
an example program:

loop outer:
loop inner:
if x = 1 then exit outer end;
if even(x) then x := x/2; next inner end;
exit inner

end;
x := 3*x+1

end

Each loop of the form loop L: . . . end has a label L; its body may contain
statements of the form next L or exit L, which may be nested inside inner
loops. A loop is executed by executing its body repeatedly, until a statement
exit L is encountered. The statement next L has the effect of beginning the
next iteration of the loop labelled L immediately.

(a) Suggest an abstract syntax for this construct.

(b) Suggest what information should be held about each loop name in a
compiler’s symbol table.

(c) Briefly discuss the checks that the semantic analysis phase of a compiler
should make for the loop construct, and the annotations it should add
to the abstract syntax tree to support code generation. Give ML code
for parts of a suitable analysis function.

(d) Show how the construct can be translated into a suitable intermediate
code, and give ML code for the relevant parts of a translation function.

3.4 In some programming languages, it is a mistake to use the value of a
variable if it has not first been initialised by assigning to it. Write a function



10 Compilers: Collected problems

that, for the language of Lab 1, tries to identify uses of variables that may
be subject to this mistake. Discuss whether it is possible to do a perfect job,
and if not, what sort of approximation to the truth it is best to make.

4 Procedures

Note: Questions on this sheet ask for Keiko code for programs in a typed
language with procedures. For experimentation, I recommend the picoPascal
compiler in the ppc4 subdirectory of the lab materials.

4.1 [See pp/test/prob4–1.p] Show the Keiko code for the following pro-
gram, explaining the purpose of each instruction.

proc double(x: integer): integer;
begin
return x + x

end;

proc apply3(proc f(x:integer): integer): integer;
begin
return f(3)

end;

begin
print_num(apply3(double));
newline()

end.

4.2 Here is a procedure that combines nesting and recursion:

proc flip(x: integer): integer;
proc flop(y: integer): integer;
begin
if y = 0 then return 1 else return flip(y–1) + x end

end;
begin
if x = 0 then return 1 else return 2 * flop(x–1) end

end;

(a) Copy out the program text, annotating each applied occurrence with its
level number.

(b) If the main program contains the call flip(4), show the layout of the
stack (including static and dynamic links) at the point where procedure
calls are most deeply nested.

4.3 [See ppc4/test/cpsfac.p] The following picoPascal program is written
in what is called ‘continuation-passing style’:

proc fac(n: integer;
proc k(r: integer): integer): integer;

proc k1(r: integer): integer;
begin



4 Procedures 11

return k(n * r)
end;

begin
if n = 0 then
return k(1)

else
return fac(n–1, k1)

end
end;

proc id(r: integer): integer;
begin
return r

end;

begin
print_num(fac(3, id));
newline()

end.

When this program runs, it eventually makes a call to id.

(a) Draw a diagram of the stack layout at that point, showing the static and
dynamic links.

(b) Show Keiko code for the procedure calls k(n * r) and fac(n–1, k1).

4.4 [2013/3; see ppc4/test/sumarray.p] Figure 3 shows a program that
computes∑

0≤i<10

(i + 1)2 = 385

by filling an array a so that a[i] = (i + 1)2, then calling a procedure that
sums the vector by using the higher-order procedure dovec to iterate over
its elements. The parameter v to the procedures sum and dovec is passed
by reference.

(a) Draw the layout of the subroutine stack at a time when the procedure
add is active, showing the layout of the stack frames for each procedure
and all the links between them.

(b) Show Keiko code that implements each of the following statements in
the program, with comments to clarify the purpose of each instruction.

(i) The statement f(v[i]) in dovec.

(ii) The statement s := s + x in add.

(iii) The statement dovec(add, v) in sum.

(c) Briefly discuss the changes in the object code and in the organisation of
storage that would be needed if the parameter v in sum and dovec were
passed by value instead of by reference. Under what circumstances
would a subroutine be faster with an array parameter passed by value
instead of by reference? On a register machine, what optimisations to
the procedure body might remove this advantage?



12 Compilers: Collected problems

type vector = array 10 of integer;

(* dovec – call f on each element of array v *)
proc dovec(proc f(x: integer); var v: vector);
var i: integer;

begin
i := 0;
while i < 10 do
f(v[i]); i := i+1

end
end;

(* sum – sum the elements of v *)
proc sum(var v: vector): integer;
var s: integer;

(* add – add an integer to s *)
proc add(x: integer);
begin
s := s + x

end;

begin
s := 0;
dovec(add, v);
return s

end;

var a: vector; i: integer;

begin
i := 0;
while i < 10 do
a[i] := (i+1)*(i+1);
i := i+1

end;

print_num(sum(a));
newline()

end.

Figure 3: Program for exercise 4.4



5 Machine code 13

4.5 [2014/2] The following Pascal-style program declares a record type
and two procedures, one of which takes a parameter of record type that is
passed by reference.

type rec = record c1, c2: char; n: integer end;

proc f(var r: rec);
begin
r.n := r.n + 1

end;

proc g();
var s: rec;

begin
...
f(s)
...

end;

(a) Briefly explain why the semantic analysis phase of a compiler must take
into account both the size and the alignment of data types, and give an
example where two types would (on a typical machine) have the same
size but different alignment.

(b) Making reasonable assumptions about the size and alignment of the
character and integer types, show the layout that would be used for the
record type rec.

(c) Sketch the frame layouts of procedures f and g in the program, and
(briefly defining the instructions you use) give postfix code for the as-
signment r.n := r.n + 1 and the procedure call f(s) in the program.

In a different programming language, values of record type are pointers to
dynamically allocated storage for a record and these pointers are passed by
value, rather like values of class type in Java. Dereferencing of the pointer is
implicit in the expression r.n.

(d) Show what code would be generated from such a language for the as-
signment r.n := r.n + 1 and the procedure call f(s), assuming the pa-
rameter r is passed by value.

(e) For the Java-like language, give an example of a program demonstrating
that parameters are passed by value and not by reference, and state
what results are expected from the program in each case.

5 Machine code

5.1 Figures 8.4 and 8.5 show two tilings of the same tree for x := a[i].
Under reasonable assumptions, how many distinct tilings does this tree have,
and what is the range of their costs in terms of the number of instructions
generated? (Relevant rules are numbered 1, 4, 6, 9, 16, 21, 36–40, 42–44
and 49 in Appendix D.)

5.2 The ARM has a multiply instruction mul r1, r2, r3 that, unlike other
arithmetic instructions, demands that both operands be in registers, and



14 Compilers: Collected problems

does not allow an immediate operand. How is this restriction reflected in the
code generator?

5.3 A previous version of the machine grammar for ARM covered the left-
shift operation with the rule,

reg → 〈Binop Lsl, reg1, rand〉 { lsl reg, reg1, rand }

where rand is the same non-terminal that describes the second operand of
arithmetic instructions line add. Identify a source program that would be
wrongly translated by a compiler incorporating this rule. What goes wrong,
how does the grammar in Appendix D avoid the problem?

5.4 Consider the following data type and procedure:

type dogptr = pointer to dogrec;
dogrec = record name: array 12 of char; age: integer; next: dog-

ptr; end;

proc sum(p: dogptr): integer;
var q: dogptr; s: integer;

begin
q := p; s := 0;
while q <> nil do
s := s + q↑.age;
q := q↑.next

end;
return s

end;

Making appropriate assumptions, describe possible layouts of the record
type rec and the stack frame for sum, assuming that all local variables are
held in the frame.

5.5 Using the layout from the previous exercise, show the sequence of trees
that would be generated by a syntax-directed translation of the statements

s := s + q↑.age;
q := q↑.next

in the loop body. Omit the run-time check that q is not null. (In contrast to
Exercise 3.1, both s and q are local variables here.)

5.6 Suggest a set of tiles that could be used to cover the trees, and show
the object code that would result.

5.7 The code that results from direct translation of the trees is sub-opt-
imal. Considering just the loop body in isolation, suggest an optimisation
that could be expressed as a transformation of the sequence of trees, show
the trees that would result, and explain the consequent improvements to the
object code.

5.8 If a compiler were able to consider the whole loop instead of just its
body, suggest a further optimisation that would be possible, and explain
what improvements to the object code that would result from it.



6 Revision 15

5.9 Suppose that the ARM is enhanced by a memory-to-memory move in-
struction

movm [r1], [r2]

with the effect mem4[r1] ← mem4[r2]; the two addresses must appear in reg-
isters.

(a) Use this instruction to translate the assignment x := y, where x and y
are local variables in the stack frame. Assuming each instruction has
unit cost, compare the cost of this sequence with the cost of a sequence
that uses existing instructions.

(b) Find a statement that can be translated into better code if the new in-
struction is used.

(c) Write one or more rules that could be added to a tree grammar to de-
scribe the new instruction.

(d) Explain, by showing examples, why optimal code for the new machine
cannot be generated by a code generator that simply selects the instruc-
tion that matches the biggest part of the tree.

(e) [Not covered in lectures.] Label each node with its cost vector, and show
how optimal code for x := y and for your example in part (b) could be
generated by the dynamic programming algorithm.

5.10 [part of 2012/3, edited]

(a) Show the trees that represent the statement

a[a[i]] := a[i]+i

before and after eliminating common sub-expressions, if a is a global
array, and i is a local variable stored in the stack frame of the current
procedure. Show also the machine code that would be generated for a
typical RISC machine. If the target machine had an addressing mode
that added together a register and the address of a global like a, how
would that affect the decision which sub-expressions should be shared?

(b) Show the process and results of applying common sub-expression elim-
ination to the sequence,

x := x – y; y := x – y; z := x – y

where all of x, y and z are locals stored in the stack frame. Show also
the resulting machine code.

6 Revision

This is a selection of past exam questions, edited in some cases to fit better with
the course as I gave it this year.

6.1 A certain programming language has the following abstract syntax for
expressions and assignment statements:

type stmt =
Assign of expr ∗ expr (∗ Assignment e1 := e2 ∗)



16 Compilers: Collected problems

and expr = { e guts : expr guts; e size : int }

and expr guts =
Var of name (∗ Variable (name, address) ∗)

| Sub of expr ∗ expr (∗ Subscript e1[e2] ∗)
| Binop of op ∗ expr ∗ expr (∗ Binary operator e1 op e2 ∗)

and name = { x name : ident ; x addr : symbol }

and op = Plus | Minus | Times | Divide

Each expression is represented by a record e with a component e.e guts that
indicates the kind of expression, and a component e.e size that indicates the
size of its value. Each variable Var x is annotated with its address x.x name.

You may assume that syntactic and semantic analysis phases of a com-
piler have built a syntactically well-formed abstract syntax tree, in which only
variables and subscript expressions appear as the left hand side e1 of each
assignment e1 := e2 and the array e1 in each subscripted expression e1[e2].

The task now is to translate expressions and assignment statements into
postfix intermediate code, using the following instructions:

type code =
Const of int (∗ Push constant ∗)

| Global of symbol (∗ Push symbolic address ∗)
| Load (∗ Pop address, push contents ∗)
| Store (∗ Pop address, pop value, store ∗)
| Binop of op (∗ Pop two operands, push result ∗)
| Seq of code list (∗ Sequence of code fragments ∗)

(a) Defining whatever auxiliary functions are needed, give the definition of
a function gen stmt : stmt → code that returns the code for an assign-
ment statement. Do not attempt any optimisation at this stage.

(b) Show the code that would be generated for the assignment

a[i,j] := b[i,j] * b[1,1]

where the variables a, b, i, j are declared by

var
a, b: array 10 of array 10 of integer;
i, j: integer;

Assume that integers have size 1 in the addressing units of the target
machine, and array a has elements a[0,0] up to a[9,9].

(c) Suggest two ways in which the code you showed in part (b) could be
optimised.

6.2 (a) Briefly explain the distinction between value and reference param-
eters, and give an example of a program in an Algol-like language that
behaves differently with these two parameter modes.

(b) Describe how both value and reference parameters may be implemented
by a compiler that generates postfix code, showing the code that would
be generated for your example program from part (a) with each kind of
parameter.



6 Revision 17

A procedure with a value-result parameter requires the actual parameter to
be a variable; the procedure maintains its own copy of the parameter, which
is initialised from the actual parameter when the procedure is called, and has
its final value copied back to the actual parameter when the procedure exits.

(c) Give an example of a program in an Algol-like language that behaves dif-
ferently when parameters are passed by reference and by value-result.

(d) Suggest an implementation for value-result parameters, and show the
code that would be generated for your example program from part (c)
with value-result parameters.

6.3 The following program is written in a Pascal-like language with arrays
and nested procedures:

var A: array 10 of array 10 of integer;

procedure P(i: integer);

var x: integer;

procedure Q();
var j: integer;

begin
A[i][j] := x

end;

procedure R();
begin

Q()
end;

begin (* P *)
R()

end

begin (* main program *)
P(3)

end.

The array A declared on the first line has 100 elements A[0][0], . . . , A[9][9].

(a) Describe the layout of the subroutine stack when procedure Q is active,
including the layout of each stack frame and the links between them.

(b) Using a suitable stack-based abstract machine code, give code for the
procedure Q. For those instructions in your code that are connected
with memory addressing, explain the effect of the instructions in terms
of the memory layout from part (a).

(c) Similarly, give code for procedure R.

6.4 (a) Explain how the run-time environment for static binding can be
represented using chains of static and dynamic links. In particular, ex-
plain the function of the following elements, and how the elements are
modified and restored during procedure call and return: frame pointer,
static link, dynamic link, return address.



18 Compilers: Collected problems

(b) Explain how functional parameters may be represented, and how this
representation may be computed when a local procedure is passed to
another procedure that takes a functional parameter. [A functional pa-
rameter of a procedure P is one where the corresponding actual param-
eter is the name of another procedure Q, and that procedure may be
called from within the body of P .]

(c) The following program is written in a Pascal-like language with static
binding that includes functional parameters:

proc sum(n: int; proc f(x: int): int): int;
begin
if n = 0 then
return 0

else
return sum(n-1, f) + f(n)

end
end;

proc sumpowers(n, k: int): int;
proc power(x: int): int;
var i, p: int;

begin
i := 0; p := 1;
while i < k do
p := p * x; i := i + 1

end;
return p

end
begin
return sum(n, power)

end;

begin (* Main program *)
print_num(sumpowers(3, 3))

end.

During execution of the program, a call is made to the procedure power
in which the parameter x takes the value 1. Draw a diagram of the stack
layout at this point, showing all the static links, including those that
form part of a functional parameter.


