
Compilers: Collected problems (with

solutions)

Mike Spivey

Michaelmas Term 2023

1 Lexical and syntax analysis

1.1 In the lecture, we wrote a regular expression to describe decimal and
hexadecimal constants in C, and derived an NFA and a DFA from it. But
there was a white lie, because C forbids decimal constants with a leading
zero, and allows unsigned octal constants that start with a zero and continue
with an arbitrary string of octal digits 0 to 7, a convention beloved of those
ancients who programmed the PDP–11. Thus the string 0293 is not an integer
constant, because the non-octal digit 9 is inconsistent with the leading zero.
Modify the regular expression to reflect this rule, and show what changes
result in the NFA and DFA. 1

Answer: We want the regular expression

–?[1–9][0–9]∗ | 0x[0–9a–f]+ | 0[0–7]∗

with three alternatives, one for each base. I’ve chosen to disallow a leadig minus sign
in front of an octal constant, though actually I think the rules of C don’t make the
minus sign part of the constant at all. It turns out that the common constant 0 is,
according to this account, written in octal – and the form –0 isn’t allowed at all.

For the NFA (Figure 1), we can simply add a third track to the machine, adjusting
some of the other transitions appropriately. Turning this into a DFA (Figure 2) reveals
that constants can be classified by looking at the first two characters, and after that
the allowable continuation characters are determined.

1.2 Suppose a lexer is written with one rule for each keyword and a catch-all
rule that matches identifiers that are not keywords, like this:

rule token =
parse

"while" {While }
| "do" {Do }
| "if" { If }
| "then" { Then }

1 I’m pretty sure these are not the true rules of C, but can’t bring myself to wade into the C
standard and find out. The exercise is worthwhile independently of that.

Copyright © 1999–2023 J. M. Spivey 1

2 Compilers: Collected problems (with solutions)

s1

s2 s3 s4

s5 s6 s7 s8 s∗9

sA sB

ε

ε

–

ε

1–9

ε

0 x 0–9, a–f

0–9

0–9, a–f

ε

ε

0

0–7

ε

Figure 1: NFA for problem 1.1

s1235A

s3 s∗49

s∗69B

s7 s∗89

s∗9B

s∅

–

0–9

1–9

0

0–9

x

0–9, a–f

0–7
0–7

0–9, a–f

Σ

Figure 2: DFA for problem 1.1

| "else" { Else }
| "end" { End }
. . .

| [’A’–’Z’’a’–’z’]+ { Ident (lexeme lexbuf) }

Describe the structure of an NFA and a DFA that correspond to this speci-
fication; explain what happens if several keywords share a common prefix.
What data structure for sets of strings does the DFA implicitly contain?

Answer: In an NFA, each keyword can correspond to a chain of states, linked by
transitions that spell out the keyword. The catch-all corresponds to a loop that
allows all letters. The complete NFA has all these parts linked by ε-transitions to
common starting and finishing states.

In a DFA, it is necessary to have a tree of states corresponding to prefixes of
the keywords, with transitions linking each state to successors that correspond to
prefixes that are longer by one letter. Letters that do not appear in some keyword
lead to a state with a loop that spells out any identifier, and there is an additional
dustbin state reached by any non-letter. The structure for recognising keywords via
their prefixes is equivalent to a trie.

1.3 Lex has the conventions that the longest match wins, and that earlier
rules have higher priority than later ones in the script. These conventions are

1 Lexical and syntax analysis 3

exploited in the lexer shown in Exercise 1.2 that recognises both keywords
and identifiers. Would it be possible to describe the set of identifiers that are
not keywords by a regular expression, without relying on these rules? If so,
would this be a practical way of building a lexical analyser?

Answer: Automata theory shows that the class of regular languages contains all finite
sets of strings and is closed under complementation and set intersection. So there
is a regular expression that describes the set of identifiers that are not keywords.
However, for any practical language, this regular expression is huge; this is not a
practical way of building a lexical analyser.

1.4 In C, a comment begins with ‘/∗’ and extends up to the next occurrence
of ‘∗/’. Write a regular expression that matches any comment. What would be
the practical advantages and disadvantages of using this regular expression
in a lexical analyser for C?

Answer: A suitable regexp is

"/∗"("∗"∗[ˆ∗/] | "/")∗"∗"+"/"

It becomes clearer if we replace /, ∗ and other characters [ˆ∗/] with a, b and c
respectively, and expand b+ to bb∗ – then the expression becomes

ab(b∗c |a)∗bb∗a

This regexp could be used to scan comments, and would pass over an entire com-
ment quickly. But if comments are very long, there is a danger of overflowing the
input buffer of the generated lexer, or at least requiring sufficient memory to store
the entire comment before it is discarded. Also, comments can contain embedded
newlines, and this would cause the lexer to lose track of the line number in the input.

1.5 In Pascal, comments can be nested, so that a comment beginning with (*
and ending with *) can have other comments inside it. What is an advantage
of this convention? Show how Pascal comments can be handled in a lexical
analyser written according to the conventions of ocamllex by using either
recursion or an explicit counter.

Answer: Nested comments allow you to comment out code easily, even if the code
contains comments itself. Here’s how to handle nested comments using the feature
of ocamllex that allows lexers to have arguments:

rule token =
parse

. . .
| "(∗" { comment 0 lexbuf ; token lexbuf }
. . .

and comment n =
parse

"(∗" { comment (n + 1) lexbuf }
| "∗)" { if n = 0 then () else comment (n−1) lexbuf }
| "\n" { incr lineno; comment lexbuf }
| { comment n lexbuf }
| eof { error "unterminated comment" }

The scanner comment consumes the part of a comment after the initial (∗. If it finds
a nested (∗, then it calls itself with an argument that is incremented by 1, and if it
finds a ∗), the counter is decremented by 1, until it reaches 0.

4 Compilers: Collected problems (with solutions)

1.6 The following productions for if statements appeared in the original
definition of Algol 60:

stmt → basic-stmt

| if expr then stmt

| if expr then stmt else stmt .

Show that these productions lead to an ambiguity in the grammar. Suggest an
unambiguous grammar that corresponds to the interpretation that associates
each else with the closest possible if.

Now consider the ambiguous grammar: because it is ambiguous, a shift–
reduce parser must have a state where both shifting and reducing lead to a
successful conclusion, or a state where it is possible to reduce by two differ-
ent productions. Find a string with two parse trees according to the gram-
mar, and show the parser state where two actions are possible. Describe the
results of shifting and of reducing in this state.

Answer: The proposed grammar is ambiguous because, if e is an expression and b
a basic statement, the string

if e then if e then b else b

can be parsed both in a way that associates the else with the first if and in a way that
associates it with the second if.i

For an unambiguous grammar, we can insist that the statement that appears be-
tween then and else should be ‘saturated’, in the sense that is cannot have another
else added to it. That means that each else is paired with the closest possible if.

stmt → basic-stmt

| if expr then stmt

| if expr then sated else stmt

sated → basic-stmt

| if expr then sated else sated.

(We can verify that this grammar is unambiguous by submitting it to yacc and ob-
serving that there are no conflicts, since any LALR(1) grammar is also unambiguous.)

Returning to the original grammar, and the string that reveals the ambiguity, when
enacting either derivation a shift–reduce parser will reach a state where

if expr then if expr then stmt

is on the stack, and the input contains else b. At this point, the parser can either
shift the else, and after shifting the token b and reducing, it reaches

if expr then if expr then stmt else stmt .

Two more reductions complete the parse. On the other hand, at the same point it
can reduce by the production stmt → if expr then stmt to reach

if expr then stmt .

i It’s important to distinguish between the property of a sentence that holds if the sentence
has more than one (essentially different) derivation and the property of a grammar that holds
if any sentence has that property. This second property is the one we refer to by the term
‘ambiguous’. If asked for an unambiguous grammar, it’s not enough to say that the ambiguity
can be avoided, e.g., by adding extra parentheses or, in this case, extra begin . . . end brackets.

1 Lexical and syntax analysis 5

if expr1 then
stmts1

elsif expr2 then
stmts2

else
stmts3

end

if expr1 then
stmts1

else
if expr2 then

stmts2

else
stmts3

end
end

Figure 3: Abbreviated syntax for chains of else if’s

Shifting else b on top of this allows the parse to be completed in another way.

1.7 In the language of Lab 1, if statements have an explicit terminator end
that removes the ambiguity discussed in the preceding exercise. However,
this makes it cumbersome to write a chain of if tests, since the end keyword
must be repeated once for each if. Show how to change the parser from
Lab 1 to allow the syntax shown on the left in Figure 3 as an abbreviation for
the syntax on the right. An arbitrarily long chain of tests written with the
keyword elsif can have a single end; the else part remains optional. Arrange
for the parser to build the same abstract syntax tree for the abbreviated
program as it would for its equivalent written without elsif.

Answer: Replace the rules

stmt :
If expr Then stmts End { IfStmt ($2, $4, Skip) }

| If expr Then stmts Else stmts End { IfStmt ($2, $4, $6) }

with the following:

stmt :
If expr Then stmts iftail End { IfStmt ($2, $4, $5) }

iftail :
/∗ empty ∗/ { Skip }

| Else stmts { $2 }
| Elsif expr Then stmts iftail { IfStmt ($2, $4, $5) } ;

1.8 One grammar for lists of identifiers contains the productions,

idlist → id

| idlist "," id

(we call this left recursive), and another (right recursive) contains the pro-
ductions,

idlist → id

| id "," idlist

In parsing a list of 100 identifiers, how much space on the parser stack is
needed by shift–reduce parsers based on these two grammars? Which gram-
mar is more convenient if we want to build an abstract syntax tree that is a
list built with cons?

6 Compilers: Collected problems (with solutions)

Answer: For the left-recursive grammar, the set of viable prefixes is finite:

ε

id

L

L ,

L , id

It follows that the parser stack never contains more than three items: after the initial
reduction of L → id, the stack always contains an L at the bottom. For each subse-
quent item in the list, the parser shifts a comma and an identifier, then immediately
reduces by L → L , id.

For the right-recursive grammar, a typical parser state is id , id , id , id during the
first part of the parse, when all the tokens from the input are shifted onto the stack
until the end of the file; and id , id , id , L during the second part, when a reduction
by L → id is followed by many reductions by L → L , id.

The left-recursive grammar leads to a parser that can read an arbitrarily long list in
constant stack space; the right-recursive grammar is less well suited to LR parsing,
and requires a stack space of 199 to parse a list of 100 identifiers. On the other
hand, if we want to build a (cons-based) list as the abstract syntax tree, then the
right-recursive grammar can include the rule,

idlist : Ident Comma idlist { $1 :: $3 }

but the left-recursive grammar needs

idlist : idlist Comma ident { $1 @ [$3] }

and building the abstract syntax tree for a list of length N needs O(N2) time. These
considerations are not very important in practice – until a compiler needs to deal with
input texts that have been generated not by human editing but by another program,
when all finite limits are likely to be strained.

1.9 [part of 2013/1] Hacker Jack decides to make his new programming
language more difficult for noobs by writing all expressions in Polish pre-
fix form.2 In this form, unary and binary operators are written before their
operands, and there are no parentheses. Thus the expression normally writ-
ten b * b – 4 * a * c would be written

– * b b * * 4 a c,

and the expression (x + y) * (x – y) would be written

* + x y – x y.

After a false start, Jack realises that his language design is doomed if any
symbol can be used both as a unary and as a binary operator, so he decides
to represent unary minus by ~.

(a) Give a context free grammar for expressions in Jack’s language, involv-
ing the usual unary and binary operators together with variables and
numeric constants. Explain precisely why the grammar would be am-
biguous if any operator symbol could be both unary and binary.

(b) In order to simplify the parser for expressions, Jack decides to minimise
the number of different tokens that can be returned by the lexical anal-
yser, distinguishing tokens with the same syntactic function by their

2 so called after the Polish logician Jan Łukasiewicz.

1 Lexical and syntax analysis 7

semantic values alone. Suggest a suitable data type of tokens for use in
the parser.

(c) Using this type of tokens and a suitable type of abstract syntax trees,
write context free productions with semantic actions for a parser.

Answer: (a) Using the same token for both kinds of minus:

expr –> + expr expr | – expr expr | ∗ expr expr | / expr expr
| – expr | NUMBER | IDENT

This is ambiguous because the string – – 3 2 has two leftmost derivations:

expr ==> – expr ==> – – expr expr ==> – – 3 expr ==> – – 3 2

expr ==> – expr expr ==> – – expr expr ==> – – 3 expr ==> – – 3 2

The same ambiguity would be present if – were replaced by any symbol that
could play both roles.

(b) We should lump together all unary operators and all binary operators:

type token =
Number of int

| Ident of string
| Binop of op
| Monop of op

(c) Using the abstract syntax trees

type expr =
Number of int

| Variable of string
| Monop of op ∗ expr
| Binop of op ∗ expr ∗ expr

we can write the following rules:

expr :
Number {Number $1 }

| Ident { Variable $1 }
| Monop expr {Monop ($1, $2) }
| Binop expr expr { Binop ($1, $2, $3) } ;

1.10 [2011/1 modified] In a file of data about the Oscars, each record
contains a sequence of dates and the name of an actor or actress, like this:

1933, 1967, 1968, 1981, "Katharine Hepburn"
1975, 1983, 1997, "Jack Nicholson"
2011, "Colin Firth"

Figure 4 shows a grammar for such files, for which. ocamlyacc reports a
shift/reduce conflict.

(a) By showing a parser state where the next action is not determined by
the look-ahead, explain why the conflict arises.

(b) Design a grammar for the same language that is accepted by ocamlyacc
without conflicts. Annotate the grammar with semantic actions that
build the same abstract syntax as the grammar shown above.

8 Compilers: Collected problems (with solutions)

%token〈year〉 Year
%token〈actor〉Actor
%token Comma

%type〈(year list ∗ actor) list〉 file
%start file

%%

file : /∗ empty ∗/ { [] }
| record file { $1 :: $2 } ;

record : years Comma Actor { ($1, $3) } ;

years :
Year { [$1] }

| Year Comma years { $1 :: $3 } ;

Figure 4: Ocamlyacc grammar for Oscars data

(c) Can the same language be described by a regular expression over the
set of tokens? Briefly justify your answer.

Answer: (a) After shifting a Year and on seeing a comma, the parser cannot tell
whether to reduce by the rule years → Year or to shift the comma as part of
the RHS of years → Year Comma years.

(b) Among several possible solutions, one is to remove the right recursion for years
in favour of left recursion:

years : Year { [$1] }
| years Comma Year { $1 @ [$3] } ;

It then becomes possible for the parser to shift a comma and look at the next
token before deciding whether the comma ends the list of years.

Other possible answers are to remove both instances of right recursion by
writing also

file : /∗ empty ∗/ { [] }
| file record { $1 @ [$2] } ;

In that case, the set of viable prefixes becomes finite.
Also, one can simply adjust the placement of the comma token in the gram-

mar, like this:

record : years Actor { ($1, $2) } ;

years : Year Comma { [$1] }
| Year Comma years { $1 :: $3 } ;

The crucial decision to reduce by the rule years → Year Comma is now taken
when Actor is seen as the look-ahead token.

(c) A file is a sequence of records, file = record∗, and a record is a non-empty
sequence of years followed by an actor, with commas in the right places:

record = Year (Comma Year)∗ Comma Actor .

So the whole thing can be described by a regular expression.

2 Expressions and statements 9

2 Expressions and statements

2.1 Write a program that finds the integer part of
√
x using binary search,

and test it by initially setting x to 200 000 000. Compile your progrm into
Keiko code, and work out the purpose of each instruction.

Answer: Here is my implementation of binary search:

begin
x := 200000000;
a := 0;
b := 20000;
(* Inv: a↑2 <= x < b↑2 *)
while a+1 < b do

m := (a+b) div 2;
if m*m <= x then
a := m

else
b := m

end
end;
print a; newline

end.

Compiling it with the compiler from Lab 1 and turning on the peephole optimiser
gives the code shown in Figure 5. I have combined multiple lines into one to save
space, but I have not deleted any of the boilerplate that surrounds the generated
code.

The first three lines (1–3) are a header, giving the name Main of this module, and
informing the Keiko assembler/linker that it needs to be combined with another
module Lib that contains I/O subroutines.

The remainder of the file is a definition of a single subroutine MAIN that contains all
the program code, followed by (lines 33–36) the declarations of the four variables, all
global, that are used in the program. Each of these variables is an integer occupying
4 bytes; their names have been systematically prefixed with an underscore in the
compiler output to avoid the situation where a variable named MAIN might clash
with the name of the main program. The heading for the subroutine (line 5) gives its
name, and specifies that it needs no space for local variables.

The code for the procedure body begins with assignments of constants to the
global variables y, a and b. Each assignment has a CONST instruction that pushes a
constant onto the stack and an STGW instruction that pops a value and STores in a
Global variable that occupies a Word of storage.

Next comes the implementation of the while loop; the form of code shown here
puts the test at the top (line 14) and consequently needs an unconditional jump to
get back to the test after executing the loop body. In this program, the peephole
optimiser has duplicated this jump at the ends of both arms of the if statement, and
it has become the JUMP instructions on lines 21 and 25.

The test of the while loop is on line 14. The expression a+1 in evaluated by
pushing the value of a and the constant 1 and adding them together. Then b is
pushed on top, and the JGEQ instruction branches to the next statement after the
loop if the test is false.

The if test on line 18 is noteworthy because m*m is computed by fetching the
value of m twice and multiplying the two copies of the value together. This code is
certainly correct, and though an alternative exists that fetches m just once –

LDGW _m; DUP; TIMES

10 Compilers: Collected problems (with solutions)

1 MODULE Main 0 0
2 IMPORT Lib 0
3 ENDHDR
4

5 FUNC MAIN 0
6 ! x := 200000000;
7 CONST 200000000; STGW _x
8 ! a := 0;
9 CONST 0; STGW _a

10 ! b := 20000;
11 CONST 20000; STGW _b
12 LABEL 1
13 ! while a+1 < b do
14 LDGW _a; CONST 1; PLUS; LDGW _b; JGEQ 2
15 ! m := (a+b) div 2;
16 LDGW _a; LDGW _b; PLUS; CONST 2; DIV; STGW _m
17 ! if m∗m <= x then
18 LDGW _m; LDGW _m; TIMES; LDGW _x; JGT 3
19 ! a := m
20 LDGW _m; STGW _a
21 JUMP 1
22 LABEL 3
23 ! b := m
24 LDGW _m; STGW _b
25 JUMP 1
26 LABEL 2
27 ! print a; newline
28 LDGW _a; CONST 0; GLOBAL Lib.Print; PCALL 1
29 CONST 0; GLOBAL Lib.Newline; PCALL 0
30 RETURN
31 END
32

33 GLOVAR _m 4
34 GLOVAR _x 4
35 GLOVAR _b 4
36 GLOVAR _a 4

Figure 5: Keiko code for a binary search

– it is not clear that this code offers any significant advantage in a bytecode inter-
preter. When we come to generate code for a register machine, however, we will take
care to recognise that m is a common sub-expression and evaluate it just once.

The statements print a and newline are translated as if they were calls to sub-
routines print(a) and newline(), in a way that we will examine closely in coming
lectures. It is only the lack of subroutine calls in the syntax of our language that
stops us from writing them that way in the source code.

2.2 Some machines have an expression stack implemented in hardware,
but with a finite limit on its depth. For these machines, it is important to
generate postfix code that makes the maximum stack depth reached during
execution as small as possible.

(a) Let the SWAP instruction be defined so that it swaps the two top ele-
ments of the stack. Show how to use this instruction to evaluate the

2 Expressions and statements 11

expression 1/(1+x) without ever having more than two items on the
stack.

(b) Prove that if expression e1 (containing variables, constants and unary
and binary operators) can be evaluated in depth d1, and e2 can be eval-
uated in depth d2, then Binop (w, e1, e2) can be evaluated in depth

min (max d1 (d2 + 1)) (max (d1 + 1) d2).

Write a function cost : expr → int that calculates the stack depth that
is needed to evaluate an expression by this method. Show that if e has
fewer than 2N operands, then cost e ≤ N.

(c) Write an expression compiler gen expr : expr → code that generates
the code that evaluates an expression e within stack depth cost e. [Hint:
use cost in your definition.]

Answer: (a) The best way to evaluate 1/(1+x) is to tackle the denominator first:

CONST 1; LDGW _x; PLUS
CONST 1; SWAP; DIV

(b) More generally, we have a choice of which operand of Binop (w, e1, e2) to evaluate
first. The sequence

〈Code for e1〉
〈Code for e2〉
Binop w

first evaluates e1 (in stack depth d1), then keeps this value on the stack while
evaluating e2 (in depth d2 + 1), finally combining the two values to give the value
of the whole expression. The maximum stack depth is max d1 (d2 + 1).

Similarly, the sequence

〈Code for e2〉
〈Code for e1〉
Swap
Binop w

keeps the value of e2 on the stack while evaluating e1, giving a maximum stack
depth of max (d1 + 1) d2. We can choose whichever of these is better, giving an
overall maximum of min (max d1 (d2 + 1)) (max (d1 + 1) d2).

The optimal cost (in terms of stack depth) is computed by the following
function:

let rec cost =
function

Number n → 1
| Variable x → 1
| Monop (w, e1) → cost e1

| Binop (w, e1, e2) →
let d1 = cost e1 and d2 = cost e2 in
min (max d1 (d2 + 1)) (max (d1 + 1) d2)

To show that cost e ≤ N if e has fewer than 2N operands, we use structural
induction on e, in a form where the value of N can vary in applications of the
induction hypotheses, so that logically the result to be proved by induction is

P (e) ≡ (∀N. size e < 2N ⇒ cost e ≤ N).

12 Compilers: Collected problems (with solutions)

If e is a constant or variable, it can be evaluated in stack depth 1; and if it is a
unary expression Monop (w, e1), then it can be evaluated in the same depth as
e1, which also has the same number of operands.

So now suppose that e has the form Binop (w, e1, e2), and has has fewer
than 2N operands. In that case, one of e1, e2 must have fewer than 2N−1

operands; for if both had 2N−1 or more, then the total would not be less than 2N .
Suppose e1 has less than 2N−1 operands and e2 has less than 2N . We may then
deduce from the induction hypothesis that cost e1 ≤ N−1 and cost e2 ≤ N,
so cost e ≤ N also. (Proof checked in outline with the Boyer-Moore theorem
prover.)

(c) We use cost in gen expr to decide which strategy to choose:

let rec gen expr =
function

Number n → Const n
| Variable x → Ldgw x.x name
| Monop (w, e1) →

Seq [gen expr e1; Monop w]
| Binop (w, e1, e2) →

if cost e1 ≥ cost e2 then
Seq [gen expr e1; gen expr e2; Binop w]

else
Seq [gen expr e2; gen expr e1; Swap ; Binop w]

The only slight worry with this is that the cost is being computed afresh at each
node, making the whole process quadratic in the size of the expression. If this is
important, then we could annotate the tree with costs before generating code,
or compute code and cost together as in the next exercise. For commutative
operators, we could avoid the Swap : another job for a peephole optimiser.

2.3 Now consider a machine that has a finite stack of depth N. In order to
make it possible to evaluate expressions of arbitrary size, the machine is also
supplied with a large collection of temporary storage locations numbered 0,
1, 2, There are two additional machine instructions:

type code = . . .
| Put of int (∗ Save temp (address) ∗)
| Get of int (∗ Fetch temp (address) ∗)

The instruction PUT n pops a value from the stack and stores it in temporary
location n, and the instruction GET n fetches the value previously stored in
temporary location n and pushes it on the stack.

Assuming N ≥ 2, define a new version of gen expr that exploits these
new instructions, and places no limit on the size of expressions. The code
generated should use as few GET and PUT instructions as possible, but you
may ignore the possibility that the source expression contains repeated sub-
expressions. There’s no need to re-use temps, so you can use a different
temp whenever you need to save the value of a sub-expression.

[Hint : optimal code for an expression can be generated by a function

gen : expr → code ∗ int

that returns code to evaluate a given expression, together with the number n
of stack slots used by the code, with n ≤ N. If both e1 and e2 require N slots
then evaluation of Binop (w, e1, e2) will need to use a temporary location.]

2 Expressions and statements 13

Answer: The function gen shown below always returns a depth that is at most N; so
in compiling Binop (w, e1, e2), the only case where a temp is needed is if the costs for
both e1 and e2 are equal to N.

let temp = ref 0

let alloc temp () = incr temp; !temp

let rec gen =
function

Number n → (Const n, 1)
| Variable x → (Ldgw x.x name, 1)
| Monop (w, e1) →

let (code1, c1) = gen e1 in
(Seq [code1; Monop w], c1)

| Binop (w, e1, e2) →
let (code1, c1) = gen e1

and (code2, c2) = gen e2 in
if c1 ≥ c2 && c2 < N then

(Seq [code1; code2; Binop w],max c1 (c2 + 1))
else if c1 ≤ c2 && c1 < N then

(Seq [code2; code1; Swap ; Binop w],max c2 (c1 + 1))
else

(∗ c1 = c2 = N ∗)
let y = alloc temp () in
(Seq [code2; Put y ; code1; Get y ; Binop w], N)

let gen expr e = fst (gen e)

Given the observation that the value c returned by gen represents the stack depth
used by the code, it seems clear that the function generates code that is feasible, in
that it never occupies more than N cells on the stack.

[The following is not really required, but I include it for completeness.] To see
that the code is optimal, in that it contains the smallest possible number of Put/Get
pairs, note that the code corresponds to an expression tree in which certain nodes
have been marked so that they will be saved in a temp. If a node has two children
with the same cost c, then marking one of them allows the node itself to be computed
with cost c instead of c + 1. The code generated above exploits this fact to keep the
cost down to N in cases where it would otherwise rise to N + 1. It is clear that none
of these marks could be eliminated without spoiling the feasibility.

But now consider a feasible marking in which some node a has a marked child b,
but a is a light node with at least one child of cost strictly less than N. We will argue
that the mark can be removed from b, and either the marking will remain feasible,
or it can be made feasible again by adding a mark closer to the root of the tree next
to a node that is not light. Thus we can take any marking with one or more marks
adjacent to light nodes and move or remove these marks one at a time to obtain a
tree with at worst the same number of Put/Get pairs where no light node has a
marked child.

Unmarking the child b can raise the cost of node a by at most one, and this can
increase in turn the costs of a’s parent and its more distant ancestors. There are
several ways in which this path of increased costs can terminate. It may reach a
node whose cost is not increased when one of its children increases in cost (because
the increased child was the cheaper one, and has not been made equal in cost to the
other). It may reach the root of the tree, raising the cost of the root by one but leaving
it no bigger than N. It may reach a node that already has a marked child, and for that
reason terminate by failing to raise the cost of the node. The worst that can happen
is that the path reaches a node whose children, both unmarked, had costs N − 1
and N, and raises the costs to N and N; in that case, we can mark one of the two

14 Compilers: Collected problems (with solutions)

children and leave the cost of the node itself as N. Whichever case applies, we have
removed the mark on a child of a light node, at the possible cost of adding a mark
on a child of a node that is not light.

2.4 Programs commonly contain nested if statements, so that either the
then part or (more commonly) the else part of an if statement is another if
statement. (The latter possibility can be abbreviated using the elsif syntax
that was the subject of problem 1.6.)

(a) Show the code that is produced for such nested statements by the naive
translation scheme that was described in the lectures and used in Lab 1.
Point out where this code is untidy and where it is significantly ineffi-
cient.

(b) Suggest rules that could be used in a peephole optimiser to improve the
code from part (a), tidying it up and ameliorating any inefficiencies.

(c) Consider the problem of generating equally tidy and efficient code di-
rectly (without using a peephole optimiser), and if possible define one
or more translation functions that produce this code.

Answer: (a) A little experimenting with the materials for Lab 1 helps here. This
source program containing an elsif chain:

begin
if x = 0 then y := 1
else if x = 1 then y := 2
else if x = 2 then y := 3
end end end

end.

compiles into the following code (reformatted to save space):

! if x = 0 then y := 1
LDGW _x; CONST 0; JEQ 1
JUMP 2
LABEL 1
CONST 1; STGW _y
JUMP 3
LABEL 2
! else if x = 1 then y := 2
LDGW _x; CONST 1; JEQ 4
JUMP 5
LABEL 4
CONST 2; STGW _y
JUMP 6
LABEL 5
! else if x = 2 then y := 3
LDGW _x; CONST 2; JEQ 7
JUMP 8
LABEL 7
CONST 3; STGW _y
JUMP 9
LABEL 8
LABEL 9
LABEL 6
LABEL 3

2 Expressions and statements 15

This code is a bit untidy because each test becomes a jump over a jump, there
are multiple labels at the end, and it contains a useless jump (to label 9) at the
end, as does the code for any if statement lacking an else part.

Again, this program, where if’s are nested inside the then parts of other if’s:

begin
if x = 0 then

if x = 1 then
if x = 2 then y := 3
else y := 4 end

else y := 5 end
else y := 6 end

end.

generates still poorer code:

! if x = 0 then
LDGW _x; CONST 0; JEQ 1
JUMP 2
LABEL 1
! if x = 1 then
LDGW _x; CONST 1; JEQ 4
JUMP 5
LABEL 4
! if x = 2 then y := 3
LDGW _x; CONST 2; JEQ 7
JUMP 8
LABEL 7
CONST 3; STGW _y
JUMP 9
LABEL 8
! else y := 4 end
CONST 4; STGW _y
LABEL 9
JUMP 6
LABEL 5
! else y := 5 end
CONST 5; STGW _y
LABEL 6
JUMP 3
LABEL 2
! else y := 6 end
CONST 6; STGW _y
LABEL 3

Here there is a long chain of jumps that lead to other jumps.

(b) All these blemishes can be tidied up with a few obvious optimisation rules,
suitable for a peephole optimiser that maintains an equivalence relation on
labels. First, multiple labels at the same place can be made equivalent:

• LABEL a; LABEL b → LABEL b, making a ≡ b.

Next, a jump to an immediately following label can be elided:

• JUMP a; LABEL b → LABEL b, when a ≡ b.

Third, a conditional jump that just skips over an unconditional jump becomes
simpler if it is reversed:

16 Compilers: Collected problems (with solutions)

• JEQ a; JUMP b; LABEL a → JNEQ b; LABEL a.

(It’s more than likely that the label will subsequently be deleted.)
These three rules are sufficient to tidy up the first code example. For the

second example, we need the rule that a label followed by an unconditional
jump can be deleted, and the label made equivalent to the target of the jump.

• LABEL a; JUMP b → JUMP b, provided initially a 6≡ b, making a ≡ b after-
wards.

This rule on its own is sufficient to improve the code in the second example, so
that all the unconditional jumps lead to a single label at the end.

(c) Fixing up the code with a peephole optimiser is easy; generating the same code
directly is less so. First, the code generated by gen cond e tlab flab can be
improved by observing that in any application either tlab or flab labels the next
instruction. Better code results in each case if gen cond is replaced by a pair
of mutually recursive functions jump if true and jump if false that cover these
two cases. Here is a version of jump if false:

let jump if false e lab =
match e with

Number x →
if x = 0 then Jump lab else Nop

| Binop ((Eq | Neq | Lt | Gt | Leq | Geq) as w, e1, e2) →
Seq [gen expr e1; gen expr e2; Jumpc (negatew, lab)]

| Monop (Not , e1) →
jump if true e1 lab

| Binop (And, e1, e2) →
Seq [jump if false e1 lab; jump if false e2 lab]

| Binop (Or , e1, e2) →
let lab1 = label () in
Seq [jump if true e1 lab1; jump if false e2 lab; Label lab1]

| →
Seq [gen expr e; Jumpb (false, lab)]

For conditional jumps, this uses a function negate defined so that, for example,
negate Leq = Gt .

In order to tidy up the jumps and labels generated from control structures,
various ad-hoc approaches yield partial solutions. A more systematic approach
follows from the observation that, in generating code for a statement, we need
information about any labels attached to the code that follows, so as to avoid
generating duplicate labels. We can also allow the context to inform us that,
instead of continuing with the next statement, we should instead branch to a
specified label; in this way, we can avoid generating branches that lead to other
branches.

Let use define a continuation to be a value of type cont :

type cont =
Next (∗ Fall through to next statement ∗)

| CanJump of codelab (∗ Fall through to label ∗)
| MustJump of codelab (∗ Jump to a label ∗)

We will replace the existing gen stmt with a function

val gen stmt : stmt → cont → cont ∗ code,

with the idea that if gen stmt s k1 = (k2, code), then k1 gives information to
gen stmt about the following context of the code it generates, and it returns

2 Expressions and statements 17

with the code a continuation k2 that describes the context for the code that
precedes it.

Given a suitable library of continuation-handling functions, we can define
gen stmt as follows:

let rec (gen stmt : stmt → cont → cont ∗ code) = function s →
match s with

Skip → skip
| Seq stmts →

sequence (List .map gen stmt stmts)
| Assign (v, e) →

quote (Seq [Line v.x line; gen expr e; Stgw v.x lab])
| IfStmt (test , thenpt , elsept) →

with exit lab (fun lab2 →
sequence [

with exit lab (fun lab1 →
sequence [quote (jump if false test lab1);

gen stmt thenpt ;
jump lab2]);

gen stmt elsept])
| WhileStmt (test , body) →

let lab1 = label () in
with exit lab (fun lab2 →

sequence [put label lab1;
quote (jump if false test lab2);
gen stmt body ;
jump lab1])

This definition resembles the existing definition of gen stmt . The only unfamil-
iar looking form is

with exit lab (fun lab → . . .),

which introduces a label lab that is attached to the code immediately following,
either reusing an existing label or creating a new one for the purpose. To go
through the details:

• skip generates no code, and sets the continuation for the code that pre-
cedes it to be the same as the code that follows.

let skip k = (k,Nop)

• seq s1 s2 joins together the code from s1 and s2, propagating continuations
along the chain.

let seq s1 s2 k =
let (k2, code2) = s2 k in
let (k1, code1) = s1 k2 in
(k1, Seq [code1; code2])

• sequence ss does the same thing, but with a sequence of code fragments
instead.

let sequence ss = List .fold right seq ss skip

• if code is a piece of code that is independent of its context, then quote code
takes the context into account, inserting a Jump instruction when it is
needed.

let quote code1 k =

18 Compilers: Collected problems (with solutions)

match k with
(Next | CanJump) → (Next , code1)

| MustJump lab → (Next , Seq [code1; Jump lab])

• To place a label, we use put label lab, which also informs preceding code
that a label is present.

let put label lab = (CanJump lab, Label lab)

• To jump to a label, we use jump lab. This does not generate a Jump in-
struction directly, but informs preceding code that it must jump to the
label instead of continuing to the next statement. If the label is in fact
attached to the next statement following, then no jump is needed.

let jump lab k =
match k with

CanJump lab1 when lab1 = lab → (CanJump lab,Nop)
| → (MustJump lab,Nop)

• Lastly, with exit attaches a fresh label to the immediately following code,
unless a label is there already, or the code wants us to branch to a differ-
ent label instead. The argument function f receives both the label and a
continuation that allows it to terminate by jumping to the label.

let with exit lab f k =
match k with

Next →
let lab = label () in
let (k1, code) = f lab (CanJump lab) in
(k1, Seq [code; Label lab])

| CanJump lab →
f lab (CanJump lab)

| MustJump lab →
f lab (MustJump lab)

The code generated by this version of gen stmt is very close to optimal, but it is
still possible to create a duplicate label in cases where the code from gen cond
ends with a label, but there is also a label on the immediately following state-
ment. This could be prevented by making gen cond also accept a continuation.
The name continuation is an allusion to a much more general way of organising
the compiling process, described at length in Andrew Appel’s book Compiling
with continuations (Cambridge, 1992).

2.5 [2013/2] The scalar product machine uses an evaluation stack, but re-
places the usual floating point addition and multiplication instructions with
a single ADDMUL instruction that, given three numbers x, y and z on the
stack, pops all three and replaces them with the quantity x + y ∗ z. Thus the
expression b ∗ b + 4 ∗ a ∗ c could be computed on this machine with the
sequence

CONST 0
LOAD b
LOAD b
ADDMUL
CONST 0
CONST 4

2 Expressions and statements 19

LOAD a
ADDMUL
LOAD c
ADDMUL

The first ADDMUL instruction computes t1 = 0 + b ∗ b, the second computes
t2 = 0 + 4 ∗ a, and the third computes the answer as t1 + t2 ∗ c. Floating
point addition and multiplication may be assumed commutative but not as-
sociative, and the distributive law does not hold in general.

(a) Suggest a suitable representation for expressions involving addition,
multiplication, constants and (global) variables, and describe in detail a
translation process that produces code like that shown in the example,
using the smallest possible number of instructions.

(b) The designers of the scalar product machine are planning to include
a stack cache whose effectiveness is maximised by keeping the stack
small. The code for b ∗ b + 4 ∗ a ∗ c shown above reaches a stack
depth of 4 just after the instruction LOAD a. If the machine has an
instruction SWAP that exchanges the top two values on the stack, find
an alternative translation of the same expression that never exceeds a
stack depth of 3.

(c) The designers are willing to add other instructions that permute the
top few elements of the stack. Give an example to show that the SWAP
instruction on its own is not sufficient to allow every expression to be
evaluated in the smallest possible stack space. [You may assume that
for each n ≥ 3 there is an expression en with addition at the root that
needs a stack depth of n.]

(d) Suggest an additional instruction that, together with SWAP, allows all
expressions to be evaluated in the optimal depth, and outline an algo-
rithm that generates code achieving the optimum. There is no need to
give code for the algorithm.

Answer: (a) We use an abstract syntax tree to represent expressions:

type expr =
Const of value | Var of ident

| Plus of expr ∗ expr | Times of expr ∗ expr

To generate code, we use a recursive function that uses pattern matching to
prioritise fruitful uses of ADDMUL over less fruitful uses.

let rec gen expr =
function

Const v → Const v
| Var x → Load x
| Plus (e1, Times(e2, e3)) →

Seq [gen expr e1; gen expr e2; gen expr e2; Addmul]
| Plus (Times (e1, e2), e3) →

Seq [gen expr e3; gen expr e1; gen expr e2; Addmul]
| Plus (e1, e2) →

Seq [gen expr e1; gen expr e2; Const 1; Addmul]
| Times (e1, e2) →

Seq [Const 0; gen expr e1; gen expr e2; Addmul]

20 Compilers: Collected problems (with solutions)

As in the course, this function represents the code as a cat-tree, using SEQ [. . .]
for the internal nodes.

(b) This sequence operates in depth 3:

CONST 0
CONST 4
LOAD a
ADDMUL
CONST 0
SWAP
LOAD c
ADDMUL
LOAD b
LOAD b
ADDMUL

(c) The expression e3 + e4 ∗ e5 could be evaluated in depth 5 by evaluating the three
sub-expressions in the order e5, e4, e3 to obtain values v5, v4, v3 on the stack,
then permuting the values into the order v3, v4, v5 and applying an ADDMUL
instruction. This permutation cannot be achieved using the SWAP instruction,
because e5 must be evaluated last and its value must appear lowest on the stack.

(d) A suitable instruction SWAP2 swaps the top item on the stack with the item
next but one below it. Together, SWAP and SWAP2 allow any permutation of the
top three values to be achieved; though actually there’s no need to swap the
top two items before invoking ADDMUL, and an acceptable permutation can be
achieved with at most one extra instruction.

The plan for evaluating an expression x + y ∗ z is to evaluate x, y and z
in decreasing order of cost, permute the values to put x at the bottom, and
finish with an ADDMUL instruction. If the sub-expressions are evaluated in the
order u, v , w with costs cu ≥ cv ≥ cw , then the cost of the whole expression is
max(cu, cv + 1, cw + 2). If the evaluation order is y , x, z, for example, then the
code will be

Evaluate y , evaluate x, SWAP, evaluate z, ADDMUL

For an expression x ∗ y + z ∗ w , either of the multiplications can be combined
with the addition, and the best approach can be determined from the costs of
the four sub-expressions. The whole process can be accomplished in linear time
by first annotating each sub-expression with its cost, then computing the code
that achieves this cost in a second pass.

2.6 [2012/2] The programming language Oberon07 contains a new form
of loop construct, illustrated by the following example:

while x > y do
x := x – y

elsif x < y do
y := y – x

end

The loop has a number of clauses, each containing a condition and a cor-
responding list of statements. In each iteration of the loop, the conditions
are evaluated one after another until one of them evaluates to true; the cor-
responding statements are then executed, and then the loop begins its next
iteration. If all the conditions evaluate to false, the loop terminates. In the

2 Expressions and statements 21

example, if initially x and y are positive integers, then the loop will continue
to subtract the smaller of them from the larger until they become equal. The
loop thus implements Euclid’s algorithm for the greatest common divisor of
two numbers.

Previous versions of Oberon included a form of loop with embedded exit
statements. The multi-branch while shown above is equivalent to the fol-
lowing loop statement:

loop
if x > y then
x := x - y

elsif x < y then
y := y - x

else
exit

end
end

In general, a loop statement executes its body repeatedly, until this leads to
one of the embedded exit statements; at that point, the whole loop construct
terminates immediately.

(a) Suggest an abstract syntax for both these loop constructs, including the
exit statement, and write production rules suitable for inclusion in an
ocamlyacc parser for the language.

(b) The two kinds of loop are both to be implemented in a compiler that
generates code for a virtual stack machine. Write the appropriate parts
of a function that generates code for the two constructs by a syntax-
directed translation.

(c) Show the code that would be generated by your implementation for the
two examples given above. Assume that x and y are local variables at
offsets −4 and −8 in the stack frame for the current procedure.

(d) The code that is generated for the multi-branchwhile loop is marginally
more efficient than that for the equivalent loop statement. Suggest rules
for inclusion in a peephole optimiser that would remove the difference
in efficiency.

Answer: (a) For the abstract syntax, we can use a list of (guard, body) pairs for the
while statement. The loop statement and the embedded exit statements are
syntactically independent from each other.

type stmt = . . .
| WhileStmt of (expr ∗ stmt) list
| LoopStmt of stmt
| ExitStmt

The concrete syntax is specified as follows:

stmt : . . .
| While clauses End {WhileStmt $2 }
| Loop stmts End { LoopStmt $2 }
| Exit { ExitStmt } ;

22 Compilers: Collected problems (with solutions)

clauses :
expr Do stmts { [($1, $3)] }

| expr Do stmts Elsif clauses { ($1, $3) :: $5 } ;

(b) We need a function gen stmt that takes an exit label as an argument:

let rec gen stmt exitlab =
function . . .
| WhileStmt clauses →

let top lab = label() in
let gen clause (test , body) =

let lab1 = label () and lab2 = label () in
Seq [gen cond test lab1 lab2;

Label lab1; gen stmt exitlab body ; Jump top lab;
Label lab2] in

Seq [Label top lab; Seq (List .iter gen clause clauses)]
| LoopStmt body →

let top lab = label () and bot lab = label () in
Seq [Label top lab;

gen stmt bot lab body ; gen (Jump top lab);
gen (Label bot lab)]

| ExitStmt →
Jump exitlab

(c) For the while statement, writing x and y for the offsets −4 and −8:

LABEL 1
LDLW x; LDLW y; JLEQ 2
LDLW x; LDLW y; MINUS; STLW x
JUMP 1
LABEL 2
LDLW x; LDLW y; JGEQ 3
LDLW y; LDLW x; MINUS; STLW y
JUMP 1
LABEL 3

For the equivalent loop statement, with labels 1 and 5 pertaining to the loop
and labels 2, 3, and 4 to the embedded if statement:

LABEL 1
LDLW x; LDLW y; JLEQ 2
LDLW x; LDLW y; MINUS; STLW x
JUMP 4
LABEL 2
LDLW x; LDLW y; JGEQ 3
LDLW y; LDLW x; MINUS; STLW y
JUMP 4
LABEL 3
JUMP 5
LABEL 4
JUMP 1
LABEL 5

(d) The code for the loop statement contains jumps that lead to other, uncondi-
tional jumps. These can be eliminated by a peephole optimiser that keeps a
table of equivalents, using the rule

2 Expressions and statements 23

• LABEL a; JUMP b → JUMP b, provided a 6≡ b, with a ≡ b added to the table
afterwards. Applying this rule gives the program,

LABEL 1
LDLW x; LDLW y; JLEQ 2
LDLW x; LDLW y; MINUS; STLW x
JUMP 1
LABEL 2
LDLW x; LDLW y; JGEQ 5
LDLW y; LDLW x; MINUS; STLW y
JUMP 1
JUMP 5
JUMP 1
LABEL 5

The remaining useless JUMP instructions can be removed by a rule for deleting
unreachable code:

• JUMP a; xxx → JUMP a provided xxx is not a label.

2.7 [2014/1, edited] Some programming languages provide conditional
expressions such as

if i >= 0 then a[i] else 0

which evaluates to a[i] if i >= 0, and otherwise evaluates to zero without
attempting to access the array element a[i].

(a) Suggest an abstract syntax for this construct, and suggest a way of in-
corporating the construct into an ocamlyacc parser for a simple pro-
gramming language so as to provide maximum flexibility without intro-
ducing ambiguity. Make sure that an expression like

if x then y else p+q

has p+q as a subexpression.

In a compiler for the language, postfix code for expressions is generated by
a function

gen expr : expr → code.

Control structures are translated using a function

gen cond : expr → codelab → codelab → code,

defined so that gen cond e tlab flab generates code that jumps to label tlab
if expression e has boolean value true, and the label flab if it has value false.

(b) Show how to enhance gen expr and gen cond to deal appropriately with
conditional expressions.

It is suggested that short-circuit boolean and could be translated by getting
the parser to treat e1 and e2 as an abbreviation for the conditional expression

if e1 then e2 else false,

expanding the abbreviation in creating the abstract syntax tree.

(c) Show the code that would be generated for the statement

if (i >= 0) and (a[i] > x) then i := i+1 end

24 Compilers: Collected problems (with solutions)

according to your translation, assuming both i and x are global integer
variables, and a is a global array of integers. Omit array bound checks.

If the resulting code is longer or slower than that produced by trans-
lating the and operator directly, suggest rules for post-processing the
code so that it is equally good.

Answer: (a) Abstract syntax:

type expr =
. . .

| IfExpr of expr ∗ expr ∗ expr

The concrete syntax can be incorporated into a parser at the top level of the
hierarchy for expressions: rename the existing expr nonterminal to expr0, then
add

expr :
expr0 { $1 }

| If expr Then expr Else expr { IfExpr ($2, $4, $6) } ;

This does not create ambiguity because (among other things) each if in an ex-
pression must have a matching else.

(b) We must make gen expr and gen cond mutually recursive, and exploit the free-
dom on a stack machine to leave values on the evaluation stack across jumps.

let rec gen expr =
function

. . .
| IfExpr (e1, e2, e3) →

let lab1 = label () and lab2 = label () and lab3 = label () in
Seq [gen cond e1 lab1 lab2;

Label lab1; gen expr e2; Jump lab3;
Label lab2; gen expr e3; Label lab3]

Continuing the mutually recursive definition begun above,

and gen cond e tlab flab =
match e with

. . .
| IfExpr (e1, e2, e3) →

let lab1 = label () and lab2 = label () in
Seq [gen cond e1 lab1 lab2;

Label lab1; gen cond e2 tlab flab;
Label lab2; gen cond e3 tlab flab]

| . . .

(c) The given statement is treated as equivalent to

if (if i >= 0 then a[i] > x else false) then i := i+1 end

The generated code is as follows.

LDGW _i; CONST 0; JLT L1
<Code for a[i]>; LDGW _x; JLEQ L3
JUMP L2
LABEL L1; JUMP L3
LABEL L2
<Code for i := i+1>
LABEL L3

3 Data structures 25

where <Code for a[i]> is

GLOBAL _a; LDGW _i; CONST 1; MINUS
CONST 4; TIMES; OFFSET; LOADW

and <Code for i := i+1> is

LDGW _i; CONST 1; PLUS; STGW _i

Translating the short-circuit conditional directly (and as above, using specific
code for the if statement with no else) gives

LDGW _i; CONST 0; JLT L3
<Code for a[i]>; LDGW _x; JLEQ L3
<Code for i := i+1>
LABEL L3

We can fix up the previous code by using a peephole optimiser that tracks equiv-
alences between labels, using the rules

• LABEL a; JUMP b → JUMP b, where a 6≡ b, making a ≡ b

• JUMP a; JUMP b → JUMP a

• JUMP a; LABEL a → LABEL a

• LABEL a → [] if a is never used

3 Data structures

3.1 Assume the following declarations.

type dogptr = pointer to dogrec;
dogrec = record name: array 12 of char; age: integer; next: dog-

ptr; end;

var q: dogptr; s: integer;

The following two statements form the body of a loop that sums the ages in
a linked list of dogs.

s := s + q↑.age;
q := q↑.next

Show Keiko code for these two statements, omitting the run-time check that
q is non-null.

Answer: In the record type dogrec, the age field is at offset 12 and the next field
at offset 16. So in the following, the first LDNW instruction replaces the address of a
record by the contents of its age field, and second one fetches the next field.

LDGW _s
LDGW _q
LDNW 12
PLUS
STGW _s
LDGW _q
LDNW 16
STGW _q

26 Compilers: Collected problems (with solutions)

3.2 A small extension to the language of Lab 2 would be to allow blocks with
local variables. We can extend the syntax by adding a new kind of statement:

stmt → local decls in stmts end

For example, here is a program that prints 53:

var x, y: integer;
begin
y := 4;
local
var y: integer;

in
y := 3 + 4; x := y * y

end;
print x + y

end.

As the example shows, variables in an inner block can have the same name
as others in an outer block. Space for the local variables can be allocated
statically, together with the space for global variables. Sketch the changes
needed in our compiler to add this extension.

Answer: (I’ll give many details here that aren’t necessarily expected in a student’s an-
swer. Those who have an appetite for more details still can look at the file prob3.diff
in the wiki, giving changes needed to the code of Lab 2 to implement the local con-
struct and also the loop construct in Exercise 3.3.)

Beginning with the abstract syntax, we add a new kind of statement:

type stmt = . . .
| LocalStmt of decl list ∗ stmt

Then it’s necessary to enhance the lexer with keywords local and in; and the parser
with the same keywords as tokens, and with the syntax for the new kind of statement:

stmt : . . .
| Local decls In stmts End { LocalStmt ($2, $4) } ;

In the semantic analyser, we must add a case to check stmt :

let rec check stmt s env =
match s with. . .
| LocalStmt (decls, body) →

let env ′ = check decls decls (new block env) in
check stmt body env ′

For this to work, we’ll need to enhance the Dict module to support nested blocks;
something like the version of Dict that was supplied with Lab 2 will fit the bill. This
is necessary so that (as in the example) inner blocks can declare names that are also
declared in the outer blocks that surround them.

Two additional things need to be take care of in semantic analysis. Since all storage
in the language is statically allocated, we will need to collect together a list of all the
declarations made in the whole program, so that the code generator can produce
assembler directives to reserve storage for each of them. To this end, we can add a
global variable that is updated by check decl to keep a list of all definitions that it
creates, and save this list as an annotation at the root of the AST, changing the type
to

type program = Program of decl list ∗ stmt ∗ def list ref

3 Data structures 27

Also, because two different variables can have the same name, it’s necessary to adjust
check decl so that it gives a different label to each definition it creates. It’s easiest to
do this by appending the value of a counter to each label. The complete new version
of check decl is as follows:ii

let gensym = ref 0
let globals = ref []

(∗ check decl – check declaration and return extended environment ∗)
let check decl (Decl (vs, t)) env0 =

let declare x env =
incr gensym;
let lab = sprintf " $ $" [fStr x.x name; fNum !gensym] in
let d = make def x.x name t lab in
globals := d :: !globals;
x.x def ← Some d; add def d env in

List .fold left (fun env1 x → declare x env1) env0 vs

In the code generator, dealing with the new construct is easy: the semantic analyser
has already dealt with the declaration, so all we need to do is produce code for the
statement that forms the body:

let rec gen stmt =
function . . .
| LocalStmt (decls, body) →

gen stmt body

Instead of traversing the global declarations to reserve storage, the code generator
can use the list of definitions saved by the semantic analyser:

let gen decl d =
let s = 4 in
printf "GLOVAR $ $\n" [fStr d.d lab; fNum s]

(∗ translate – generate code for the whole program ∗)
let translate (Program (ds, ss, glodefs)) =
. . .
List .iter gen decl !glodefs

(The constant 4 here should be replaced by a calculation of the size occupied by
d.d type in a solution that also implements the changes required in Lab 3.)

3.3 A certain imperative programming language contains a looping con-
struct that consists of named loops with exit and next statements. Here is
an example program:

loop outer:
loop inner:
if x = 1 then exit outer end;
if even(x) then x := x/2; next inner end;
exit inner

end;
x := 3*x+1

end

ii The use of fold left here is a bit clumsy because the arguments of declare come in the
wrong order. In some of the lab compilers, I use instead a function Util.accum with type
(α → β → β) → α list → β → β and the obvious definition that fits in better with the syntax-
first style.

28 Compilers: Collected problems (with solutions)

Each loop of the form loop L: . . . end has a label L; its body may contain
statements of the form next L or exit L, which may be nested inside inner
loops. A loop is executed by executing its body repeatedly, until a statement
exit L is encountered. The statement next L has the effect of beginning the
next iteration of the loop labelled L immediately.

(a) Suggest an abstract syntax for this construct.

(b) Suggest what information should be held about each loop name in a
compiler’s symbol table.

(c) Briefly discuss the checks that the semantic analysis phase of a compiler
should make for the loop construct, and the annotations it should add
to the abstract syntax tree to support code generation. Give ML code
for parts of a suitable analysis function.

(d) Show how the construct can be translated into a suitable intermediate
code, and give ML code for the relevant parts of a translation function.

Answer: (a)

type stmt = . . .
| LoopStmt of name ∗ stmt list
| ExitStmt of name
| NextStmt of name
| . . .

(b) During analysis of the loop body, the symbol table should contain a definition
of the loop name that contains two labels, one for use in the next statement
and another for the exit statement.

(c) The semantic analyser should check that statements exit L and next L occur
only inside a loop labelled L. Each occurrence of the label L, whether at the top
of a loop or in a exit or next statement, should be annotated with a definition
containing the two labels.

(d)

let rec gen stmt =
function . . .
| LoopStmt (x, body) →

let d = get def x in
Seq [Label d.d nextlab; gen stmts body ;

Jump d.d nextlab; Label d.d exitlab]
| NextStmt x →

let d = get def x in Jump d.d nextlab
| ExitStmt x →

let d = get def x in Jump d.d exitlab
| . . .

3.4 In some programming languages, it is a mistake to use the value of a
variable if it has not first been initialised by assigning to it. Write a function
that, for the language of Lab 1, tries to identify uses of variables that may
be subject to this mistake. Discuss whether it is possible to do a perfect job,
and if not, what sort of approximation to the truth it is best to make.

Answer: This question has a nice answer if we choose to use an applicative, persis-
tent, functional data structure to represent sets of variables, but a less nice answer

3 Data structures 29

if we allow ourselves to get distracted into representing sets by an imperative data
structure such as a hash table. In OCaml, the library provides a module for sets
represented as binary trees which we can import with the (slightly cryptic) code,

module IdSet = Set .Make(struct
type t = ident
let compare = compare

end)

The function check expr e ini checks that all variables used in the expression e are
in the set ini , giving an error message if not:

let rec check expr e ini =
match e with

Number n → ()
| Variable x →

if not (IdSet .mem x.x name ini) then
err message x.x line

"Variable $ may not be initialised" [fStr x.x name]
| Monop (w, e1) → check expr e1 ini
| Binop (w, e1, e2) → check expr e1 ini ; check expr e2 ini

To check a statement, we must do two things: check that the statement does not
use any variables that are not initialised, and compute the set of variables that are
initialised after the statement has been executed. The function check stmt returns
this latter set.iii

let rec check stmt s ini =
match s with

Skip → ini
| Seq ss →

List .fold left (fun ini1 s → check stmt s ini1) ini ss
| Assign (x, e) → check expr e ini ; IdSet .add x.x name ini
| Print e → check expr e ini ; ini
| Newline → ini
| IfStmt (test , thenpt , elsept) →

check expr test ini ;
let s1 = check stmt thenpt ini
and s2 = check stmt elsept ini in
IdSet .inter s1 s2

| WhileStmt (test , body) →
check expr test ini ;
ignore (check stmt body ini);
ini

Note that we are taking a conservative approximation by not allowing for variables
that are initialised in the body of a while loop, since the loop body may not be
executed at all. That means we will report that variables may be used without being
initialised when in fact no execution of the program would do that. In practice,
this seems a much more useful approximation than the other one; it is easy for the
programmer to insert a dummy initialisation if the warning appears wrongly.

For the if statement, checking the two arms thenpt and elsept results in two sets
of variables s1 and s2, each of which may extend the given set ini . We take the

iii The OCaml library function ignore, defined by

let ignore x = ()

allows an expression of any type to be used as a ‘statement’ of type unit .

30 Compilers: Collected problems (with solutions)

intersection of the two sets in order to say that a variable is initialised after the if
under the circumstances that it was in ini originally, or it is initialised by both arms
of the conditional.

The last detail is that the whole program is checked beginning with the empty set
of variables:

let check prog (Program ss) =
ignore (check stmt ss IdSet .empty)

In a usable implementation, it would be wise to report each variable as uninitialised
only once, and that would require keeping track of the set of variables that have been
mentioned in a warning so far.

4 Procedures

Note: Questions on this sheet ask for Keiko code for programs in a typed
language with procedures. For experimentation, I recommend the picoPascal
compiler in the ppc4 subdirectory of the lab materials.

4.1 [See pp/test/prob4–1.p] Show the Keiko code for the following pro-
gram, explaining the purpose of each instruction.

proc double(x: integer): integer;
begin
return x + x

end;

proc apply3(proc f(x:integer): integer): integer;
begin
return f(3)

end;

begin
print_num(apply3(double));
newline()

end.

Answer: This code comes from the ppc4 compiler in the lab kit. I turned on the
peephole optimiser to make the code more compact.

MODULE Main 0 0
IMPORT Lib 0
ENDHDR

FUNC _double 0
! return x + x
LDLW 16 -- push x
LDLW 16 -- push x again
PLUS -- compute x + x
RETURN -- return
END

FUNCC _apply3 0
! return f(3)
CONST 3 -- push argument 3
LDLW 20 -- fetch static link of f

4 Procedures 31

LDLW 16 -- fetch code address of f
PCALLW 1 -- call f with 1 argument
RETURN -- result from f is returned by apply3
END

FUNC MAIN 0
! print_num(apply3(double));
CONST 0 -- static link for double
GLOBAL _double -- code address for double
CONST 0 -- static link for apply 3
GLOBAL _apply3 -- address of apply3
PCALLW 2 -- call apply3 with 2 words of args
CONST 0
GLOBAL _print_num
PCALL 1 -- call library routine
! newline()
CONST 0
GLOBAL _newline
PCALL 0 -- call library routine
RETURN
END

4.2 Here is a procedure that combines nesting and recursion:

proc flip(x: integer): integer;
proc flop(y: integer): integer;
begin
if y = 0 then return 1 else return flip(y–1) + x end

end;
begin
if x = 0 then return 1 else return 2 * flop(x–1) end

end;

(a) Copy out the program text, annotating each applied occurrence with its
level number.

(b) If the main program contains the call flip(4), show the layout of the
stack (including static and dynamic links) at the point where procedure
calls are most deeply nested.

Answer:

proc flip1(x: integer): integer;
proc flop2(y: integer): integer;
begin

if y(2,16) = 0 then return 1
else return flip1(y(2,16)-1) + x(1,16) end

end;
begin

if x(1,16) = 0 then return 1 else return 2 * flop2(x(1,16)-1) end
end;

(For the stack layout, see Figure 6.)

4.3 [See ppc4/test/cpsfac.p] The following picoPascal program is written
in what is called ‘continuation-passing style’:

proc fac(n: integer;

32 Compilers: Collected problems (with solutions)

MAIN

flip(4)

flop(3)

flip(2)

flop(1)

flip(0)

D

D

D

D

D

S

S

Figure 6: Stack layout for exercise 4.2

proc k(r: integer): integer): integer;
proc k1(r: integer): integer;
begin
return k(n * r)

end;
begin
if n = 0 then
return k(1)

else
return fac(n–1, k1)

end
end;

proc id(r: integer): integer;
begin
return r

end;

begin
print_num(fac(3, id));
newline()

end.

When this program runs, it eventually makes a call to id.

(a) Draw a diagram of the stack layout at that point, showing the static and
dynamic links.

(b) Show Keiko code for the procedure calls k(n * r) and fac(n–1, k1).

Answer: (a) The sequence of calls is as follows:

fac(3, id) −→ fac(2, k13)−→ fac(1, k12) −→ fac(0, k11)
−→ k111−→ k12(1)−→ k13(2)−→ id(6),

4 Procedures 33

MAIN

fac(3)

fac(2)

fac(1)

fac(0)

k1(1)

k1(1)

k1(2)

id(6)

Figure 7: Stack layout for exercise 4.3

where k1n denotes the instance of k1 that is nested inside the invocation of fac
with the specified value of n. Because k1 is the only procedure that is nested
inside another, only it has non-null static links. Each invocation of k1 uses its
static link to fetch n and k from the enclosing invocation of fac. The stack
layout is as shown in Figure 7. Typically, the procedural argument k that is
invoked by k1 is itself the instance of k1 in the next invocation of fac going
down the stack.

(b) The call k(n * r) results in the code

LDLW 12
LDNW 16
LDLW 16
TIMES
LDLW 12
LDNW 24
LDLW 12
LDNW 20
PCALLW 1

The call fac(n–1, k1) results in the code

LOCAL 0
GLOBAL _fac.k1
LDLW 16
CONST 1
MINUS
CONST 0
GLOBAL _fac
PCALLW 3

4.4 [2013/3; see ppc4/test/sumarray.p] Figure 8 shows a program that
computes∑

0≤i<10

(i + 1)2 = 385

34 Compilers: Collected problems (with solutions)

by filling an array a so that a[i] = (i + 1)2, then calling a procedure that
sums the vector by using the higher-order procedure dovec to iterate over
its elements. The parameter v to the procedures sum and dovec is passed
by reference.

(a) Draw the layout of the subroutine stack at a time when the procedure
add is active, showing the layout of the stack frames for each procedure
and all the links between them.

(b) Show Keiko code that implements each of the following statements in
the program, with comments to clarify the purpose of each instruction.

(i) The statement f(v[i]) in dovec.

(ii) The statement s := s + x in add.

(iii) The statement dovec(add, v) in sum.

(c) Briefly discuss the changes in the object code and in the organisation of
storage that would be needed if the parameter v in sum and dovec were
passed by value instead of by reference. Under what circumstances
would a subroutine be faster with an array parameter passed by value
instead of by reference? On a register machine, what optimisations to
the procedure body might remove this advantage?

Answer: (a) See Figure 9.

(b) Using only basic operations for clarity:

(i) For the statement f(v[i]) in dovec.

LOCAL 24; LOADW -- fetch address of v
LOCAL -4; LOADW -- fetch value of i
CONST 4; TIMES; OFFSET -- add offset for v[i]
LOADW -- fetch value of v[i]
LOCAL 20; LOADW -- static link for f
LOCAL 16; LOADW -- code address for f
PCALL 1 -- call f

This can be abbreviated to LDLW 24; LDLW –4; LDIW; LDLW 20; LDLW 16;
PCALL 1.

(ii) For the statement s := s + x in add.

LOCAL 12; LOADW -- fetch static link
CONST -4; OFFSET; LOADW -- fetch value of s
LOCAL 16; LOADW -- fetch x
PLUS
LOCAL 12; LOADW -- fetch static link
CONST -4; OFFSET; STOREW -- store into s

Abbreviated, this becomes LDLW 12; LDNW –4; LDLW 16; PLUS; LDLW 12;
STNW –4.

(iii) For the statement dovec(add, v) in sum.

LOCAL 16; LOADW -- fetch address of v
LOCAL 0 -- static link for add
GLOBAL _add -- code address for add
CONST 0 -- static link for dovec
GLOBAL _dovec -- code address for dovec

4 Procedures 35

type vector = array 10 of integer;

(* dovec – call f on each element of array v *)
proc dovec(proc f(x: integer); var v: vector);
var i: integer;

begin
i := 0;
while i < 10 do
f(v[i]); i := i+1

end
end;

(* sum – sum the elements of v *)
proc sum(var v: vector): integer;
var s: integer;

(* add – add an integer to s *)
proc add(x: integer);
begin
s := s + x

end;

begin
s := 0;
dovec(add, v);
return s

end;

var a: vector; i: integer;

begin
i := 0;
while i < 10 do
a[i] := (i+1)*(i+1);
i := i+1

end;

print_num(sum(a));
newline()

end.

Figure 8: Program for exercise 4.4

36 Compilers: Collected problems (with solutions)

x+16

statlink+12

cp

ra

dynlinkfp →

add

v addr+24

f statlink+20

f code+16

statlink = 0

cp

ra

dynlink

i−4

dovec

v addr+16

statlink = 0+12

cp

ra

dynlink

s−4

sum

Figure 9: Stack layout for exercise 4.4

PCALL 3 -- call dovec

The only abbreviation possible here is to start with LDLW 16.

(c) The parameter array would have to be copied at the time of each call to sum or
dovec . Space for the copied parameter would be allocated in the stack frame for
each of these procedures below the local variables. The parameter itself would
still be passed as the address of the argument array, but code at the beginning
of the procedure body would copy it into the space allocated for it; in Keiko,
there is a special FIXCOPY instruction for this purpose. References to the array
in the body of the procedure would refer directly to the local copy, rather than
indirectly to the parameter array, so that the sequence shown as LOCAL 24;
LOADW in the code above could be replaced by LOCAL v_copy, saving a load on
each access to the array.

Passing an array by value would be faster if the procedure body makes fre-
quent references to elements of the array, so that the time saved in not having
to access the elements indirectly through the parameter reference would more
than pay for the time needed to do the copying. This advantage could be re-
moved if the compiler were able to detect that the parameter reference was
constant over the procedure body and move it to a register, loading the register
just once.

4.5 [2014/2] The following Pascal-style program declares a record type
and two procedures, one of which takes a parameter of record type that is
passed by reference.

type rec = record c1, c2: char; n: integer end;

proc f(var r: rec);
begin

4 Procedures 37

r.n := r.n + 1
end;

proc g();
var s: rec;

begin
...
f(s)
...

end;

(a) Briefly explain why the semantic analysis phase of a compiler must take
into account both the size and the alignment of data types, and give an
example where two types would (on a typical machine) have the same
size but different alignment.

(b) Making reasonable assumptions about the size and alignment of the
character and integer types, show the layout that would be used for the
record type rec.

(c) Sketch the frame layouts of procedures f and g in the program, and
(briefly defining the instructions you use) give postfix code for the as-
signment r.n := r.n + 1 and the procedure call f(s) in the program.

In a different programming language, values of record type are pointers to
dynamically allocated storage for a record and these pointers are passed by
value, rather like values of class type in Java. Dereferencing of the pointer is
implicit in the expression r.n.

(d) Show what code would be generated from such a language for the as-
signment r.n := r.n + 1 and the procedure call f(s), assuming the pa-
rameter r is passed by value.

(e) For the Java-like language, give an example of a program demonstrating
that parameters are passed by value and not by reference, and state
what results are expected from the program in each case.

Answer: (a) Most architectures do not support loads and stores of, e.g., four-byte
integers at addresses that are not a multiple of four. It is thus necessary to
ensure not only that an integer is allocated four bytes of space, but also that its
address is aligned on a four-byte boundary, even if this means inserting some
padding. The type array 4 of char will also have size 4 but its alignment can
be taken as 1.

(b) The type rec will have one-byte fields for c1 and c2 at offsets 0 and 1, two bytes
of padding, and a field for n at offset 4. (Higher addresses at the top of the
picture.)

n

c1 c20

+4

(c) Using a 16-byte frame head as in the course, f will have a frame laid out like
this, with one parameter word and no locals.

38 Compilers: Collected problems (with solutions)

+16 Address of r

fp →
Frame head

The procedure g will have this frame layout, with 8 bytes reserved for the local s.

fp →
Frame head

−8
Record s

The assignment r.n := r.n + 1 refers to the var parameter r, requiring an extra
load instruction in each reference.

LDLW 16 ! Load address of r
LDNW 4 ! Load value of r.n
CONST 1; BINOP Plus
LDLW 16 ! Load address of r
STNW 4 ! Store into r.n

Instructions used here are those from the lectures, with abbreviations

LDLW n = LOCAL n; LOADW
LDNW n = CONST n; OFFSET; LOADW
STNW n = CONST n; OFFSET; STOREW

The call f(s) needs us to pass the address of s. Following the conventions of
the course, which include a static link of zero for global procedures,

LOCAL –8
CONST 0
GLOBAL _f
PCALL 1

(d) The parameter r is still represented as the address of a record, and the code
for the assignment is unchanged. Now, however, the stack frame of g no longer
directly contains a record, but contains the address of a record that is allocated
dynamically. So code for the call becomes

LDLW –4
CONST 0
GLOBAL _f
PCALL 1

(e) We should assign directly to the parameter within the procedure.

proc f(r, s: rec);
begin

r := s
end;

var p, q: rec;

begin (* Main program *)
p := new(rec); q := new(rec);
p.n := 3; q.n := 4;

5 Machine code 39

f(p, q);
print p.n

end.

With parameters passed by value, this prints 3; with parameters passed by
name, the procedure sets the global p to share the same record as q, and the
result is 4.

5 Machine code

5.1 Figures 8.4 and 8.5 show two tilings of the same tree for x := a[i].
Under reasonable assumptions, how many distinct tilings does this tree have,
and what is the range of their costs in terms of the number of instructions
generated? (Relevant rules are numbered 1, 4, 6, 9, 16, 21, 36–40, 42–44
and 49 in Appendix D.)

Answer: In the specified tree,iv

〈Storew ,
〈Loadw ,
〈Offset , 〈Global a〉,
〈Lsl , 〈Loadw , 〈Local 40〉〉, 〈Const 2〉〉〉〉,

〈Local −4〉〉,

some nodes must compute their values into registers; they are the Global and the
two Loadw ’s. Let us agree that they will be computed into registers u0, u2 and u6,
in keeping with the longest code sequence shown at the end of this solution.

We can implement each of 〈Storew , u6, 〈Local −4〉〉 and 〈Loadw , 〈Local 40〉〉
in either one instruction or two, according to whether we evaluate the local address
into a register; this multiplies the number of tilings by a factor of 2 in each case.

With these considerations out of the way, we are left with the trunk of the tree:

〈Loadw , 〈Offset , u0, 〈Lsl , u2, 〈Const 2〉〉〉〉

This can be achieved in one instruction, derived using the rule

addr → 〈Offset , reg1, 〈Lsl , reg2, 〈Const n〉〉〉 { [reg1, reg2, LSL #n] }.

But there are six other ways of doing the same job, each corresponding to computing
into registers some combination of the three internal nodes Offset , Lsl and Const 2.
Using just the rules shown in Figure 8.5, we must compute the Lsl into a register,
and can obtain four possibilities by choosing to compute the Offset , the Const 2,
or both, needlessly into registers. Additionally, the ARM allows the operand of an
arithmetic instruction to contain a shift by a register or a constant, as described by
the following rules.

rand → 〈Lsl , reg, shift〉 { reg, LSL shift }

shift → 〈Const k〉 { #k }
shift → 〈reg〉 { reg }

For example, we can combine the Offset and Lsl into one instruction and obtain the
sequence

mov u3, #2
add u5, u0, u2, LSL u3

iv Warning: a perfect answer to this question requires more knowledge of the ARM than
perhaps is conducive to continuing mental health.

40 Compilers: Collected problems (with solutions)

ldr u6, [u5]

The only forbidden tiling is the one where the constant is developed into a register
but the shift, add, and load are combined:

mov u3, #2
ldr u6, [u0, u2, LSL u3] @ Wrong!

This is wrong because the shift amount in an effective address calculation must be a
constant, though a register can be used in the shift-and-add instruction shown above.

Putting it all together, possible answers to the question are as follows:

• Using only rules from Figure 8.5, a total of 4 × 2 × 2 = 16 tilings.

• Using also the rule that covers the trunk in a single instruction, a total of 5 ×
2 × 2 = 20 tilings.

• Using additionally the two rules that allow shifts in a rand , a total of 7× 2× 2 =
28 ways of tiling the tree.v

The shortest instruction sequence (if scaled addressing is allowed) has four instruc-
tions. The longest is the sequence of nine instructions where each node is computed
into its own register:vi

ldr u0, =_a
add u1, fp, #20
ldr u2, [u1]
mov u3, #2
lsl u4, u2, u3
add u5, u0, u4
ldr u6, [u5]
add u7, fp, #16
str u6, [u7]

Other valid code sequences exist where the constants 16 and 20 are developed into
registers before adding them to fp either explicitly or via an addressing calculation.
Code sequences like that become necessary if a large frame leads to offsets that do
not fit in the immediate field of an instruction. They correspond to a different way
of coding the tiles involving 〈Local n〉, but not to a different way of dividing the
tree into tiles. It’s worth mentioning too that each tiling can be linearised in multiple
ways by permuting independent instructions, so that the number of valid sequences
is still greater.

5.2 The ARM has a multiply instruction mul r1, r2, r3 that, unlike other
arithmetic instructions, demands that both operands be in registers, and
does not allow an immediate operand. How is this restriction reflected in the
code generator?

Answer: In eval reg, we include the following case:

let rec eval reg r t =
match t with . . .
| 〈Binop Times, t1, t2〉 →

let v1 = eval reg anyreg t1 in
let v2 = eval reg anyreg t2 in
gen reg "mul" [r ; v1; v2]

v It’s instructive to implement the process of parsing with tree grammars and generate the
28 tilings mechanically. A Haskell program appears at the end of these answers.
vi As always, we show each value as occupying a distinct virtual register, leaving it to the
register allocator to reuse dead registers.

5 Machine code 41

The use of eval reg in place of eval rand for evaluating t2 reflects the constraint that
both operands of the mul instruction be in registers.

5.3 A previous version of the machine grammar for ARM covered the left-
shift operation with the rule,

reg → 〈Binop Lsl, reg1, rand〉 { lsl reg, reg1, rand }

where rand is the same non-terminal that describes the second operand of
arithmetic instructions line add. Identify a source program that would be
wrongly translated by a compiler incorporating this rule. What goes wrong,
how does the grammar in Appendix D avoid the problem?

Answer: A program that contains an expression such as (in picoPascal)

lsl(x, lsl(y, z))

will give rise to a tree such as

〈Binop Lsl, x, 〈Binop Lsl, y, z〉〉,

where x, y and z are trees such as 〈Loadw , 〈Regvar n〉〉 corresponding to the three
variables. With the rule shown in the question, this tree can be covered using the
productions

reg → 〈Binop Lsl, reg1, rand〉

rand → 〈Binop Lsl, reg, reg〉

and the resulting code contains an ‘instruction’

lsl r0, r4, r5, LSL r6

This is not legal, because the lsl instruction is already an abbreviation for a mov
with a shifted operand. There isn’t space in the instruction to specify two shifts,
and there isn’t provision in the datapath to use the barrel shifter twice in the same
instruction.

What we should do instead is introduce a new non-terminal for shift amounts,
allowing each one to be a register or a constant, but forbidding the illegal shift-by-a-
shift form.

reg → 〈Binop Lsl, reg1, shift〉

shift → 〈Const k〉
shift → reg

We can put a side condition on the 〈Const k〉 form that requires 0 ≤ k < 32. That
raises the subtle point that the (very uncommon) shifts by a constant greater than
31 will be compiled into instructions that put the shift amount into a register first.
This guarantees that the compiler faithfully reproduces the behaviour of shifts in the
underlying machine, without our having to spell out that behaviour in the compiler.vii

It’s a matter of taste whether a compiler warning would be appropriate in this case.

5.4 Consider the following data type and procedure:

type dogptr = pointer to dogrec;

vii That behaviour is probably not what you expect: the machine looks at only the bottom
byte b of the shift amount, producing a shifted result if 0 ≤ b < 32 and zero if b ≥ 32. Thus
shifting by 255 produces zero, but shifting by 257 produces that same result as shifting by 1.
(ARMv6, page A5–10.)

42 Compilers: Collected problems (with solutions)

Figure 10: Layouts for question 1

dogrec = record name: array 12 of char; age: integer; next: dog-
ptr; end;

proc sum(p: dogptr): integer;
var q: dogptr; s: integer;

begin
q := p; s := 0;
while q <> nil do
s := s + q↑.age;
q := q↑.next

end;
return s

end;

Making appropriate assumptions, describe possible layouts of the record
type rec and the stack frame for sum, assuming that all local variables are
held in the frame.

Answer: See Figure 10, which assumes that the frame head occupies 40 bytes. [Note:
record layout needs updating.]

5.5 Using the layout from the previous exercise, show the sequence of trees
that would be generated by a syntax-directed translation of the statements

s := s + q↑.age;
q := q↑.next

in the loop body. Omit the run-time check that q is not null. (In contrast to
Exercise 3.1, both s and q are local variables here.)

Answer: Two trees:

〈Storew ,
〈Binop Plus,
〈Loadw , 〈Local −8〉〉,
〈Loadw ,
〈Offset ,
〈Loadw , 〈Local −4〉〉
〈Const 12〉〉〉〉,

〈Local −8〉〉

〈Storew ,
〈Loadw ,
〈Offset ,
〈Loadw , 〈Local −4〉〉,

5 Machine code 43

Storew

Binop Plus

Loadw

Local −8

Loadw

Offset

Loadw

Local −4

Const 12

Local −8

ldr

r0

ldr

r1

ldr

r2

add

r3

str Storew

Loadw

Offset

Loadw

Local −4

Const 16

Local −4

ldr

r1

ldr

r0

str

Figure 11: Trees for Question 5.5

〈Const 16〉〉〉,
〈Local −4〉〉

(See also Figure 11.)

5.6 Suggest a set of tiles that could be used to cover the trees, and show
the object code that would result.

Answer: We can use tiles according to the grammar:

stmt → 〈Storew , reg, addr〉 { str reg, addr }

reg → 〈Binop Plus, reg1, reg2〉 { add reg, reg1, reg2 }
reg → 〈Loadw , addr〉 { ldr reg, addr }

addr → 〈Local n〉 { [fp, #n] }
addr → reg { [reg] }
addr → 〈Offset , reg, 〈Const n〉〉 { [reg, #n] }

See Figure 11 once more for the tiling. The object code is as follows:

ldr u0, [fp, #-8]
ldr u1, [fp, #-4]
ldr u2, [u1, #12]
add u3, u0, u2
str u3, [fp, #-8]
ldr u4, [fp, #-4]
ldr u5, [u4, #16]
str u5, [fp, #-4]

5.7 The code that results from direct translation of the trees is sub-opt-
imal. Considering just the loop body in isolation, suggest an optimisation
that could be expressed as a transformation of the sequence of trees, show
the trees that would result, and explain the consequent improvements to the
object code.

Answer: In the previous code, registers u1 and u4 both contain the value of q, and
are computed independently. Within the basic block, we could eliminate the common

44 Compilers: Collected problems (with solutions)

Deftemp t

Loadw

Local −4

ldr

r4

Storew

Binop Plus

Loadw

Local −8

Loadw

Offset

Temp t Const 12

Local −8

ldr

r0

r4

ldr

r1

add

r2

str Storew

Loadw

Offset

Temp t Const 16

Local −4

r4

ldr

r0

str

Figure 12: Trees after CSE

sub-expression and keep it in a temporary register t. The result can be expressed as
a sequence of three trees

t := q;
s := s + t↑.data;
q := t↑.next

that is to say,

〈Deftemp t, 〈Loadw , 〈Local −4〉〉〉

〈Storew ,
〈Binop Plus,
〈Loadw , 〈Local −8〉〉,
〈Loadw , 〈Offset , 〈Temp t〉, 〈Const 12〉〉〉,

〈Local −8〉〉

〈Storew ,
〈Loadw ,
〈Offset , 〈Temp t〉, 〈Const 16〉〉〉,

〈Local −4〉〉

(see Figure 12).
Now we need two more tiles:

stmt → 〈Deftemp t, reg〉 { Temp t lives in reg }

reg → 〈Temp t〉 { Use temp t }

The following object code results, using r4 for the temp:

ldr r4, [fp, #-4]
ldr r0, [fp, #-8]
ldr r1, [r4, #12]
add r2, r0, r1
str r2, [fp, #-8]
ldr r3, [r4, #16]
str r3, [fp, #-4]

5.8 If a compiler were able to consider the whole loop instead of just its
body, suggest a further optimisation that would be possible, and explain
what improvements to the object code that would result from it.

5 Machine code 45

Storew

Binop Plus

Loadw

Regvar 0

Loadw

Offset

Loadw

Regvar 1

Const 12

Regvar 0

r9

r10

ldr

r0

add

r9

Storew

Loadw

Offset

Loadw

Regvar 1

Const 16

Regvar 1

r10

ldr

r10

Figure 13: Trees with register variables

Answer: Now considering the whole loop, it would be possible to keep both q and s
in registers, say r9 and r10. The loop body then becomes

ldr r0, [r10, #12]
add r9, r9, r0
ldr r10, [r10, #16]

(see Figure 13 for the tiled trees).

5.9 Suppose that the ARM is enhanced by a memory-to-memory move in-
struction

movm [r1], [r2]

with the effect mem4[r1] ← mem4[r2]; the two addresses must appear in reg-
isters.

(a) Use this instruction to translate the assignment x := y, where x and y
are local variables in the stack frame. Assuming each instruction has
unit cost, compare the cost of this sequence with the cost of a sequence
that uses existing instructions.

(b) Find a statement that can be translated into better code if the new in-
struction is used.

(c) Write one or more rules that could be added to a tree grammar to de-
scribe the new instruction.

(d) Explain, by showing examples, why optimal code for the new machine
cannot be generated by a code generator that simply selects the instruc-
tion that matches the biggest part of the tree.

(e) [Not covered in lectures.] Label each node with its cost vector, and show
how optimal code for x := y and for your example in part (b) could be
generated by the dynamic programming algorithm.

Answer: (a) We need to compute the addresses into registers, so we can’t use the
indexed addressing mode any more. Writing x and y for the frame offsets of
the two variables, we get

add r0, fp, #x

46 Compilers: Collected problems (with solutions)

add r1, fp, #y
movm [r1], [r2]

That sequence has cost 3, but a simple load and store have cost 2:

ldr r0, [fp, #y]
str r0, [fp, #x]

It’s fairly reasonable to assign unit cost to each instruction, because the memory
access costs of the two sequences are the same. We need to assume also that
there is no pipeline stall in either sequence, for example when a load is imme-
diately followed by a store that uses the loaded value – or that both sequences
suffer from the stall.

(b) The movm instruction can be used beneficially for the statement x := y, where
x and y are global variables, or the statement p↑.x := q↑.x, where p and q are
pointer variables and x is a field at offset 0.viii For this statement, the addresses
p↑ and q↑ must be computed into registers anyway, and the sequence can be
completed with either a load and a store or (better) a single movm instruction.

ldr r0, [fp, #q]
ldr r1, [fp, #p]
movm [r0], [r1]

(c) The single rule stmt → 〈Storew , 〈Loadw , reg1〉, reg2〉 is needed, generating
the code movm [reg2], [reg1].

(d) In the examples already given, the optimal code for x := y, with tree

〈Storew , 〈Loadw , 〈Local y〉〉, 〈Local x〉〉,

is obtained by making using the tile 〈Storew , reg, 〈Local n〉〉 to give a stw
instruction. But the pattern 〈Storew , 〈Loadw , reg〉, reg〉 also matches at the
root and gives the alternative, sub-optimal code. Neither of these patterns is
bigger than the other, and the choice between them must be made depending
on whether the two arguments of the Storew both need to be computed into
registers.ix

Further explanation: we are considering here the problem of achieving the
effect of the statement assuming an infinite register set but using a specific set of
instructions, and not the (different) problem of evaluating an expression using
the smallest possible number of registers. Each cost vector (reg, addr , rand)

viii For MIPS-like machines, the statement a[i] := a[j], where a is a local array, provides an
example that benefits from the movm instruction. The limited addressing modes of the MIPS
mean that the addresses of both a[i] and a[j] have to computed into registers anyway, and
then a single movm instruction could replace a load and a store.

On ARM, however, the better addressing modes allow this statement to be coded as

add r0, [fp, #a]
ldr r1, [fp, #j]
ldr r2, [r0, r1, LSL #2]
ldr r3, [fp, #i]
str r2, [r0, r3, LSL #2]

and the code using movm is actually longer.
ix It isn’t actually necessary to have non-nested patterns for the greedy algorithm to fail. For
example, the simple, linear tree

〈Print , 〈Log , 〈Tan , 〈Load x〉〉〉〉

with rules stmt → 〈Print reg〉, stmt → 〈Print , 〈Log , reg〉〉, reg → 〈Log , 〈Tan , 〈Load x〉〉〉,
reg → 〈Tan , reg〉, reg → 〈Load x〉 (all with unit cost) has an optimal tiling with two tiles, but
requires three tiles if we choose the largest possible tile to cover the root.

5 Machine code 47

Storew

Loadw Local x

Local y

1
1
1

1
0
1

1
0
1

2

reg
addr
rand

Figure 14: Cost assignments for x := y

attached to a node denotes the cost (in our case, the number of instructions)
for making the value of the node available in a register (reg), as an address
(addr) and as the second operand (rand) of an arithmetic instruction. Since
there are no constants in the expression, the rand cost is in each case equal to
the reg cost.

We can calculate the costs by starting near the leaves and working upwards:
see Figure 14. For the sub-tree 〈Loadw , 〈Local y〉〉, we can use the rules reg →
〈Loadw , addr〉 [1] and addr → 〈Local n〉 to choose the instruction ldr r1, [fp,
#y] with a cost of 1, leaving the result in register r1. This beats the sequence

add r0, fp, #y
ldr r1, [r0]

that does the addition with an add instruction and not with indexed addressing.
The latter sequence corresponds to the rules reg → 〈Loadw , addr〉 [1] and
addr → reg and reg → 〈Local n〉 [1].

• The costs for each Local node are (1, 0, 1) because it can be calculated
into a register with the add instruction shown above, and it can be used
as an address with the indexed addressing syntax [fp, #y].

• The costs for the Loadw node are (1, 1, 1) because the value can be loaded
into a register with the single ldr instruction shown above, and any value
in a register can be used as an address or operand with no additional cost
(addr → reg and rand → reg).

• For the Storew node, we need consider only the cost of executing it as
a statement.x Translating it using stmt → 〈Storew , reg, addr〉 with a
str instruction give a cost of 1 for the instruction, plus 1 for the Loadw
as a reg, and 0 for 〈Local x〉 as an addr , a total of 2. Using stmt →
〈Storew , 〈Loadw , reg〉, reg〉 with a movm instruction gives a cost of 1
for the instruction, plus 1 for 〈Local y〉 as a reg and 1 for 〈Local x〉 as a
reg, a total of 3.

(e) For p↑.x := q↑.x, the tree is

〈Storew ,
〈Loadw , 〈Loadw , 〈Local q〉〉〉,
〈Loadw , 〈Local p〉〉〉

Cost assignments for this tree are shown in Figure 15. Nothing is a constant, so
the rand costs are equal to the reg costs and not shown. Costs for the subtrees

x To be fully accurate, each node should have four costs (reg, addr , rand, stmt), with the stmt
cost being irrelevant (and conventionally infinite) everywhere but at the root, and the other
costs being infinite at the root.

48 Compilers: Collected problems (with solutions)

(a)Storew

(b)Loadw (e)Loadw

(c)Loadw (f)Local p

(d)Local q

2
2

1
1

1
0

1
1

1
0

reg
addr

Figure 15: Cost assignments for p↑.x := q↑.x

representing 〈Loadw , 〈Local , 〉〉 are as before. For the Loadw node marked
(b), the reg cost is one greater than the addr cost of its child, and its addr
cost is the same as its reg cost. For the Storew node, we can calculate the
cost of using the tile 〈Storew , 〈Loadw , reg〉, reg〉 corresponding to movm as
1 + creg(c) + creg(e) = 3. The cost of the tile 〈Storew , reg, addr〉 corresponding
to str is 1 + creg(b) + caddr(e) = 4, so the movm wins.

5.10 [part of 2012/3, edited]

(a) Show the trees that represent the statement

a[a[i]] := a[i]+i

before and after eliminating common sub-expressions, if a is a global
array, and i is a local variable stored in the stack frame of the current
procedure. Show also the machine code that would be generated for a
typical RISC machine. If the target machine had an addressing mode
that added together a register and the address of a global like a, how
would that affect the decision which sub-expressions should be shared?

(b) Show the process and results of applying common sub-expression elim-
ination to the sequence,

x := x – y; y := x – y; z := x – y

where all of x, y and z are locals stored in the stack frame. Show also
the resulting machine code.

Answer: [Modified to suit ARM conventions.]

(a) For a[a[i]] := a[i]+i, the initial tree is

〈Storew ,
〈Binop Plus,
〈Loadw ,
〈Offset , 〈Global a〉,
〈Lsl , 〈Loadw , 〈Local i〉〉, 〈Const 2〉〉〉〉,

〈Loadw , 〈Local i〉〉〉,
〈Offset ,
〈Global a〉,
〈Lsl ,
〈Loadw ,

5 Machine code 49

〈Offset , 〈Global a〉,
〈Lsl , 〈Loadw , 〈Local i〉〉,
〈Const 2〉〉〉〉,

〈Const 2〉〉〉〉

The value table, with reference counts in parentheses:

1 <GLOBAL a> (2)
2 <LOCAL i> (1)
3 <LOADW, 2> (2)
4 <CONST 2> (2)
5 <LSL, 3, 4> (1)
6 <OFFSET, 1, 5> (1)
7 <LOADW, 6> (2)
8 <BINOP Plus, 7, 3> (1)
9 <LSL, 7, 4> (1)

10 <OFFSET, 1, 9> (1)
11 <STORE, 8, 10> (0)

Of the common sub-expressions, we might treat 〈Const 2〉 as trivial, leaving
〈Global a〉 and the two Loadws to be shared. The resulting forest is

〈Deftemp 1, 〈Global a〉〉

〈Deftemp 2, 〈Loadw , 〈Local −4〉〉〉

〈Deftemp 3,
〈Loadw , 〈Offset , 〈Temp 1〉, 〈Lsl , 〈Temp 2〉, 〈Const 2〉〉〉〉〉

〈Storew ,
〈Binop Plus, 〈Temp 3〉, 〈Temp 2〉〉,
〈Offset , 〈Temp 1〉, 〈Lsl , 〈Temp 3〉, 〈Const 2〉〉〉〉

Machine code, with temps labelled t1 etc., and working registers labelled u1
etc.:

ldr t1, =_a
ldr t2, [fp, #i]
lsl u1, t2, #2
ldr t3, [t1, u1]
add u2, t3, t2
lsl u3, t3, #2
str u2, [t1, u3]

This code uses the reg + reg addressing mode, but doesn’t fold the shifts into
the addressing mode: other codings are possible. We can put u1 and u2 in r0
and u3 in r1.

(b) For the other example, we begin with

〈Storew ,
〈Minus, 〈Loadw , 〈Local x〉〉,
〈Loadw , 〈Local y〉〉〉,

〈Local x〉〉

〈Storew ,
〈Minus, 〈Loadw , 〈Local x〉〉,
〈Loadw , 〈Local y〉〉〉,

〈Local y〉〉

50 Compilers: Collected problems (with solutions)

〈Storew ,
〈Minus, 〈Loadw , 〈Local x〉〉,
〈Loadw , 〈Local y〉〉〉,

〈Local z〉〉

The value table, exploiting the trick of giving each node 〈Storew , i, j〉 an extra
child 〈Loadw , j〉:

1 <LOCAL x> (2)
2 <LOADW, 1> (1)
3 <LOCAL y> (3)
4 <LOADW, 3> (2) – temp 1
5 <MINUS, 2, 4> (1)

(kill 2)
6 <LOADW, 1> (2) – temp 2
7 <STOREW, 5, 1, 6> (0)
8 <MINUS, 6, 4> (1)

(kill 4)
9 <LOADW, 3> (2) – temp 3

10 <STOREW, 8, 3, 9> (0)
11 <MINUS, 6, 9> (1)
12 <LOCAL z> (2)
13 <LOADW, 12> (1)
14 <STOREW, 11, 12, 13> (0)

So temp 1 contains the original value of y; temp 2 contains the new value of x;
temp 3 contains the new value of y. Forest:

〈Deftemp 1, 〈Loadw , 〈Local y〉〉〉

〈Deftemp 2, 〈Minus, 〈Loadw , 〈Local x〉〉, 〈Temp 1〉〉〉

〈Storew , 〈Temp 2〉, 〈Local x〉〉

〈Deftemp 3, 〈Minus, 〈Temp 2〉, 〈Temp 1〉〉〉

〈Storew , 〈Temp 3〉, 〈Local y〉〉

〈Storew , 〈Minus, 〈Temp 2〉, 〈Temp 3〉〉, 〈Local z〉〉

Machine code:

ldr t1, [fp, #y] -- t1
ldr u1, [fp, #x] -- t1, u1
sub t2, u1, t1 -- t1, t2
str t2, [fp, #x] -- t1, t2
sub t3, t2, t1 -- t2, t3
str t3, [fp, #y] -- t2, t3
sub u2, t2, t3 -- u2
str u2, [fp, #z] -- none

This time, we could get away with two registers, putting t1 and t3 in one register
and u1, u2 and t2 in another; our lab compiler prefers to use callee-save registers
for the temps and others as scratch registers, so it uses three different registers
for this example.

Addendum: As promised, here is a Haskell implementation of parsing with tree
grammars. Let’s represent the trees as rose trees, extended to allow embedded non-
terminals.

data RTree a = Node a [RTree a] | NT Class

5 Machine code 51

data Class = Stmt | Reg | Addr | Rand deriving (Show, Eq)

instance Show a => Show (RTree a) where
show (Node x ts) =

"<" ++ show x ++ concat [", " ++ show t | t <– ts] ++ ">"
show (NT c) = show c

We need to include as operators only the ones that are needed for our example sub-
ject; and for present purposes we can omit the arguments in operators like LOCAL n
and GLOBAL _a.

data Op =
STOREW | LOADW | OFFSET | GLOBAL | LOCAL | LSL | CONST
deriving (Eq, Show)

subject =
Node STOREW [Node LOADW [Node OFFSET [Node GLOBAL [],

Node LSL [Node LOADW [Node LOCAL []], Node CONST []]]],
Node LOCAL []]

A grammar rule has a name (prefixed with a star if it corresponds to an instruction),
a non-terminal class as its LHS and a tree with embedded non-terminals as its RHS.

data Rule = Rule String Class (RTree Op)

rules = [
Rule "∗str" Stmt (Node STOREW [reg, addr]),
Rule "∗ldr" Reg (Node LOADW [addr]),
Rule "∗addfp" Reg (Node LOCAL []),
Rule "local" Addr (Node LOCAL []),
Rule "∗add" Reg (Node OFFSET [reg, rand]),
Rule "index" Addr (Node OFFSET [reg, reg]),
Rule "scale" Addr (Node OFFSET [reg, Node LSL [reg, Node CONST []]]),
Rule "∗ldr=" Reg (Node GLOBAL []),
Rule "∗lsl" Reg (Node LSL [reg, rand]),
Rule "lshiftc" Rand (Node LSL [reg, Node CONST []]),
Rule "lshiftr" Rand (Node LSL [reg, reg]),
Rule "∗mov" Reg (Node CONST []),
Rule "const" Rand (Node CONST []),
Rule "reg" Rand reg,
Rule "indir" Addr reg]
where

reg = NT Reg; addr = NT Addr; rand = NT Rand

We represent the results of parsing as a tree labelled with rule names, a kind of
projection of the subject tree. The parsing process is described in a surprisingly
compact way.

type Parse = RTree String

dorules :: Class –> RTree Op –> [Parse]
dorules x t = concat [map (Node name) (match rhs t)

| Rule name y rhs <– rules, x == y]

match :: RTree Op –> RTree Op –> [[Parse]]
match (NT x) t = [[p] | p <– dorules x t]
match (Node v ps) (Node w ts) =

if v /= w then [] else map concat (cprod (zipWith match ps ts))

The function cprod is Strachey’s Cartesian product.

cprod :: [[a]] –> [[a]]

52 Compilers: Collected problems (with solutions)

cprod [] = [[]]
cprod (xs:xss) = [y:ys | y <– xs, ys <– cprod xss]

The endgame: answer is a list of 28 parsings of the subject tree.

answer = dorules Stmt subject

Type length answer for the number, or putStr (unlines (map show answer)) for a neat
listing.

An alternative implementation of tiling written in Prolog can be found in the test
case lab4/test/pprolog.p, together with a mini-Prolog interpreter written in picoPas-
cal.

6 Revision

This is a selection of past exam questions, edited in some cases to fit better with
the course as I gave it this year.

6.1 A certain programming language has the following abstract syntax for
expressions and assignment statements:

type stmt =
Assign of expr ∗ expr (∗ Assignment e1 := e2 ∗)

and expr = { e guts : expr guts; e size : int }

and expr guts =
Var of name (∗ Variable (name, address) ∗)

| Sub of expr ∗ expr (∗ Subscript e1[e2] ∗)
| Binop of op ∗ expr ∗ expr (∗ Binary operator e1 op e2 ∗)

and name = { x name : ident ; x addr : symbol }

and op = Plus | Minus | Times | Divide

Each expression is represented by a record e with a component e.e guts that
indicates the kind of expression, and a component e.e size that indicates the
size of its value. Each variable Var x is annotated with its address x.x name.

You may assume that syntactic and semantic analysis phases of a com-
piler have built a syntactically well-formed abstract syntax tree, in which only
variables and subscript expressions appear as the left hand side e1 of each
assignment e1 := e2 and the array e1 in each subscripted expression e1[e2].

The task now is to translate expressions and assignment statements into
postfix intermediate code, using the following instructions:

type code =
Const of int (∗ Push constant ∗)

| Global of symbol (∗ Push symbolic address ∗)
| Load (∗ Pop address, push contents ∗)
| Store (∗ Pop address, pop value, store ∗)
| Binop of op (∗ Pop two operands, push result ∗)
| Seq of code list (∗ Sequence of code fragments ∗)

(a) Defining whatever auxiliary functions are needed, give the definition of
a function gen stmt : stmt → code that returns the code for an assign-
ment statement. Do not attempt any optimisation at this stage.

6 Revision 53

(b) Show the code that would be generated for the assignment

a[i,j] := b[i,j] * b[1,1]

where the variables a, b, i, j are declared by

var
a, b: array 10 of array 10 of integer;
i, j: integer;

Assume that integers have size 1 in the addressing units of the target
machine, and array a has elements a[0,0] up to a[9,9].

(c) Suggest two ways in which the code you showed in part (b) could be
optimised.

Answer: (a) It’s best to use mutually recursive functions gen addr and gen expr
that produce l-values and r -values respectively.

let rec gen addr e =
match e.e guts with

Var x → Global x.x addr
| Sub (e1, e2) →

Seq [gen addr e1; gen expr e2;
Const e.e size; Binop Times; Binop Plus]

| → failwith "gen addr"

and gen expr e =
match e.e guts with

(Var | Sub (,)) →
Seq [gen addr e; Load]

| Binop (w, e1, e2) →
Seq [gen expr e1; gen expr e2; Binop w]

Then gen stmt is quite easy:

let gen stmt =
function

Assign (e1, e2) →
Seq [gen expr e2; gen addr e1; Store]

(b) This requires only systematic use of the definitions. First comes code to find
the value of b[i,j], by taking the address _b and adding on 10 times i and 1
times j, then loading from the resulting address.

GLOBAL _b
GLOBAL _i
LOAD
CONST 10
TIMES
PLUS
GLOBAL _j
LOAD
CONST 1
TIMES
PLUS
LOAD

The next stage is to compute the value of b[1,1] by a similar process.

GLOBAL _b

54 Compilers: Collected problems (with solutions)

CONST 1
CONST 10
TIMES
PLUS
CONST 1
CONST 1
TIMES
PLUS
LOAD

These two values are then multiplied together; then the address of a[i,j] is
calculated and the result is stored there.

TIMES
GLOBAL _a
GLOBAL _i
LOAD
CONST 10
TIMES
PLUS
GLOBAL _j
LOAD
CONST 1
TIMES
PLUS
STORE

(c) Multiplication by unity could be elided; constant expressions such as 1*1 and
1*10 could be evaluated at compile time, and the resulting expression b+10+1
simplified to b+11. The common sub-expressions implicit in the index calcu-
lations for a[i,j] and b[i,j] could be shared.

6.2 (a) Briefly explain the distinction between value and reference param-
eters, and give an example of a program in an Algol-like language that
behaves differently with these two parameter modes.

(b) Describe how both value and reference parameters may be implemented
by a compiler that generates postfix code, showing the code that would
be generated for your example program from part (a) with each kind of
parameter.

A procedure with a value-result parameter requires the actual parameter to
be a variable; the procedure maintains its own copy of the parameter, which
is initialised from the actual parameter when the procedure is called, and has
its final value copied back to the actual parameter when the procedure exits.

(c) Give an example of a program in an Algol-like language that behaves dif-
ferently when parameters are passed by reference and by value-result.

(d) Suggest an implementation for value-result parameters, and show the
code that would be generated for your example program from part (c)
with value-result parameters.

Answer: (a) The procedure receives a copy of the value of a parameter passed by
value. Assignments to the formal parameter within the procedure do not affect
the subsequent value of a variable passed as an actual parameter, and changes

6 Revision 55

to the actual parameter after the procedure is called do not affect the value of
the formal parameter.

For parameters passed by reference, the actual parameter must be a variable
or a component of an array or record. Inside the procedure, the formal param-
eter refers to the location of this variable, so that assignments to the formal
parameter have a persistent effect on the value stored in the actual parameter
and vice versa.

(b) The following program prints 1 if the parameter of p is passed by value, and 2
if it is passed by reference.

proc p(x); begin x := 2 end;

var y;

begin (* main program *)
y := 1;
p(y);
print y

end.

(c) We can change the actual parameter from within the procedure, and see if the
change is undone when the final value of the formal parameter is written back.
This program prints 1 if the parameter of p is passed by value-result, and 2 is
it is passed by reference.

var y;

proc p(x); begin y := 2 end;

begin (* main program *)
y := 1;
p(y);
print y

end.

(d) For a parameter passed by value-result, the procedure can receive the address
of the parameter, but also keep a copy among the local variables in its stack
frame. The actual parameter is copied into the frame on procedure entry, and
copied back when the procedure returns.

For the program above, with the address of x at offset +16 in the frame of p
and the local copy at offset -4:

FUNC p 4
LDLW 16 ! Copy initial value of x
LOAD
STLW –4
CONST 3 ! Set global y to 2
STGW _y
LDLW –4 ! Copy back final value of x
LDLW 16
STORE
RETURN

FUNC MAIN 0
CONST 1 ! Set y to 1
STGW _y
CONST _y ! Call p, passing address of y
CONST 0
CONST _p

56 Compilers: Collected problems (with solutions)

CALL 2
LDGW _y ! Print y
PRINT
RETURN

For consistency with the rest of the course, I’ve passed a null static link to the
procedure p, though this detail is not essential to the question.

6.3 The following program is written in a Pascal-like language with arrays
and nested procedures:

var A: array 10 of array 10 of integer;

procedure P(i: integer);

var x: integer;

procedure Q();
var j: integer;

begin
A[i][j] := x

end;

procedure R();
begin

Q()
end;

begin (* P *)
R()

end

begin (* main program *)
P(3)

end.

The array A declared on the first line has 100 elements A[0][0], . . . , A[9][9].

(a) Describe the layout of the subroutine stack when procedure Q is active,
including the layout of each stack frame and the links between them.

(b) Using a suitable stack-based abstract machine code, give code for the
procedure Q. For those instructions in your code that are connected
with memory addressing, explain the effect of the instructions in terms
of the memory layout from part (a).

(c) Similarly, give code for procedure R.

Answer: (a) (See handwritten diagram.) The frames for both Q and R have static
links that point to the frame for P.

(b) Let’s assume that integers have size 4 in the addressing units of the machine.
Q must access i and x using its static link, but j is in its frame.

FUNC Q 4
LDLW 12
LDNW –4 ! x
CONST _A
LDLW 12
LDNW 16 ! i

6 Revision 57

CONST 40
TIMES
OFFSET ! address of A[i]
LDLW –4 ! j
CONST 4
TIMES
OFFSET ! address of A[i][j]
STOREW
RETURN

(c) The important point here is that R is at the same nesting level as Q, so it passes
its own static link as the static link for Q.

FUNC R 0
LDLW 12
CONST Q
CALL 2
RETURN

6.4 (a) Explain how the run-time environment for static binding can be
represented using chains of static and dynamic links. In particular, ex-
plain the function of the following elements, and how the elements are
modified and restored during procedure call and return: frame pointer,
static link, dynamic link, return address.

(b) Explain how functional parameters may be represented, and how this
representation may be computed when a local procedure is passed to
another procedure that takes a functional parameter. [A functional pa-
rameter of a procedure P is one where the corresponding actual param-
eter is the name of another procedure Q, and that procedure may be
called from within the body of P .]

(c) The following program is written in a Pascal-like language with static
binding that includes functional parameters:

proc sum(n: int; proc f(x: int): int): int;
begin
if n = 0 then
return 0

else
return sum(n-1, f) + f(n)

end
end;

proc sumpowers(n, k: int): int;
proc power(x: int): int;
var i, p: int;

begin
i := 0; p := 1;
while i < k do
p := p * x; i := i + 1

end;
return p

end
begin

58 Compilers: Collected problems (with solutions)

return sum(n, power)
end;

begin (* Main program *)
print_num(sumpowers(3, 3))

end.

During execution of the program, a call is made to the procedure power
in which the parameter x takes the value 1. Draw a diagram of the stack
layout at this point, showing all the static links, including those that
form part of a functional parameter.

Answer: (a) The dynamic chain records the sequence of calls, and is used to re-
set the base pointer when a procedure returns. The static chain shows how
procedures are nested in the program text, and is used for access to non-local
variables.

• base pointer: a register pointing to a fixed position in the stack frame for
the current procedure activation. On a call, it is changed to point to the
newly created frame; when a procedure returns, it is restored from the
dynamic link.

• static link: a pointer, stored in the frame head of a procedure activation,
that leads to a stack frame for the textually enclosing procedure. The
static link is passed along with the arguments when a procedure is called.

• dynamic link: a pointer, stored in the frame head of a procedure activation,
that leads to the stack frame of the caller. It is the saved value of the base
pointer before the procedure was called, and is used to restore the base
pointer when it returns.

• return address: the address of the next instruction after the CALL instruc-
tion that created a procedure activation. This is saved in the frame head
as part of the action of calling a procedure, and is used to restore the
program counter when the procedure returns.

(b) A functional parameter is represented by a pair made from the address of the
procedure’s code and the static link that should be passed when it is called. If
a procedure P at nesting level n passes a procedureQ at levelm as a functional
parameter to another procedure, it must be that 1 ≤ m ≤ n + 1. If m = 1 then
procedure Q is global and its static link is null. If m = n + 1, then Q is local to
P , and P passes its own base pointer as the static link for Q. In intermediate
cases, Q is local to one of P ’s ancestors, and it is necessary to follow the static
chain for n −m + 1 steps in order to find the static link to pass for Q.

(c) (See the handwritten diagram.) At the point in question, there are six activations
on the stack, all linked together by their dynamic links: in order from bottom
to top, they are main, sumpowers, 3 activations of sum, and power. Since
the procedures sumpowers and sum are global, their static links are null; but
the power frame, and the functional parameters in each of the sum frames, all
have their static links pointing to the frame for sumpowers.

