
Implementing multi-level break and

compact storage

Mike Spivey, December 2020

This year’s Christmas Assignment asks for implementations of one feature
no sane programmer would use (multi-level break statements) and another
that every programmer can benefit from (compact storage for records and
local variables).

1 Break statements

Implementing break statements is a straight-forward exercise that follows
through the stages of the compiler. The idea is that every kind of loop –
beginning while, repeat, or for – should support embedded break state-
ments, with break 3 (for example) breaking out of three levels of loop, and
break on its own equivalent of break 1.

We may as well make break and break 1 equivalent in the parser, so that
the abstract syntax is simply (from tree.mli)

type stmt guts =
. . .

| Break of int
| . . .

We first augment the lexer with a new keyword – in lexer.mll:

let symtable =
Util.make hash 100 [. . .; ("break", Break); . . .]

That keyword is used for the concrete syntax – in parser.mly we add a new
token type Break , and productions for the nonterminal stmt1 that denotes
different kinds of statement:

stmt1 : . . .
| Break { Break 1 }
| Break Number { Break $2 }
| . . .

There’s no particular advantage for clarity or efficiency in introducing a new
nonterminal level opt for the optional level appearing after break.

Following through the compiler pass by pass, we can make a minimal alter-
ation to the semantic analyser by adding an argument nest that gives the nest-

Copyright © 2020 J. M. Spivey 1

2 Implementing multi-level break and compact storage

ing depth to the function check stmt for analysing statements. The changes
are straightforward, and to illustrate the approach I give here the checking
code for while loops and break statements. Other kinds of loop follow the
pattern of incrementing nest in the recursive call for the loop body, while
constructs that are not loops simply pass on nest unchanged.

(∗ check stmt – check and annotate a statement ∗)
let rec check stmt s env alloc nest =

err line := s.s line;
match s.s guts with

. . .

| WhileStmt (cond, body) →
let ct = check expr cond env in
if not (same type ct boolean) then

sem error "type mismatch in while statement" [];
check stmt body env alloc (nest + 1)

| Break n →
if nest = 0 then

sem error "break outside any loop" []
else if n < 1 ‖ n > nest then

sem error "break depth not in range" []

It’s best here to generate a special error message for the case nest = 0, be-
cause that covers the case where break is implicitly equivalent to break
1 without mentioning the depth argument inserted by the parser. There’s
no great advantage in allocating code labels at this stage, since there is no
interaction between the environment and loop nesting. The places where
procedure bodies and the main program are analysed need a small change
to initialise the nest argument to zero when calling check stmt .

Next we can look at the intermediate code generator tgen.ml, and our job
is then done, because the new statements can be implemented in terms of
existing back-end mechanisms, and the jump optimiser works as well for
them as for other patterns of branching. This time, we add to gen stmt an
extra argument that is a stack of break labels.

let rec gen stmt s brkstack =
let code =

match s.s guts with
. . .

| WhileStmt (test , body) →
let l1 = label () and l2 = label () and l3 = label() in
〈Seq ,
〈Label l1〉,
gen cond test l2 l3,
〈Label l2〉,
gen stmt body (l3 :: brkstack),
〈Jump l1〉,
〈Label l3〉〉

| Break n →
〈Jump (List .nth brkstack (n−1))〉

2 Compact storage 3

As with the nesting count in the semantic analyser, we can pass the break
stack to recursive calls unchanged when the construct is not a loop. In the
case of loops, each construct already has a label at the bottom that can be
pushed on the break stack for the recursive call. There’s just one place – in
do proc – where the stack is initialised to empty.

A good report will contain a variety of test cases, covering at least every
kind of loop and various orders of nesting. I’ll content myself with one, a
nested for loop with a break out of the middle.

var i, j, x: integer;

begin
for i := 1 to 5 do
for j := 1 to 5 do
x := 10*i + j;
print_num(x); newline();
if x = 32 then break 2 end

end
end

end.

2 Compact storage

Alignment requirements for different data types can lead to gaps in the stor-
age that is allocated, both in record types and in stack frames. We can remove
the gaps by the simple expedient of sorting the fields or local variables in de-
scending order of alignment, so that (in our simple language) all the four-byte
integers come before all the one-byte characters and booleans. More gener-
ally, if we put a variable or field with alignment n after one with alignment
2n, we can be sure that the second item will be aligned on an n-byte bound-
ary, so no padding will be needed (and the same if we substitute 2kn for 2n).
This will work provided alignments are all powers of two, and the size of
each type is a multiple of its alignment, a constraint that we will be careful
to respect when we adjust the representation of record types, padding them
at the end if necessary.

Additionally, the existing compiler gives each record type the maximum
alignment of any datatype, and that leads to gaps in the representation of
types like

array 10 of record hi, lo: char end

because each element of the array occupies two bytes of a four-byte record,
padded at the end. This can be fixed by giving each record type the maximum
alignment of any of its fields, so that the record type above would have size 2
and alignment 1. The array then gets size 20 and alignment 1.

These ideas can be implemented entirely within the semantic analyser.
At present, local variables can live in registers, and the compiler uses the
simple but effective device of allocating registers to the first few variables
declared in each procedure, omitting those that must be addressible from
nested routines. It’s hard to work out how this scheme will jibe with sorting
the declarations, so I started by disabling register variables by nuking the
appropriate part of loc alloc . Support for register variables in the back-end

4 Implementing multi-level break and compact storage

can remain in place: it will not be used but does no harm. I refreshed the
code for the test cases using

$ make promote

so as to provide a baseline for whatever improvements we can achieve.

2.1 Test cases
I also added two new test cases where I hoped the improvement would be
noticeable. The test pack.p contains a procedure where the sorting should
give a more compact layout.

proc foo(x, y: integer): integer;
var a: char; b: integer; c: boolean; d: integer;

begin
a := chr(x);
b := x + y;
c := (x = y);
d := x - y;
print_char(a);
if c then
return b

else
return d

end
end;

begin
print_num(foo(65, 66)); newline();

end.

Test fillrec.p contains the same array of records as above: it should fit in 20
bytes, not 40 after the representation is improved.

var r: array 10 of record lo, hi: char end;

proc fill(s: array 20 of char);
var i: integer;

begin
for i := 0 to 9 do
r[i].lo := s[2*i];
r[i].hi := s[2*i+1]

end
end;

proc print_low();
var i: integer;

begin
for i := 0 to 9 do
print_char(r[i].lo)

end
end;

begin
fill("ABCDEFGHIJKLMNOPQRST");

2 Compact storage 5

print_low(); newline()
end.

More tests would be needed in a perfect answer!

2.2 Implementation
Implementing the improvements is surprisingly easy, given the fact that stor-
age for each block is allocated by first assembling a list of definitions ds, then
calling the function do alloc , defined as follows.

let do alloc alloc ds =
let h d =

match d.d kind with
VarDef | CParamDef | VParamDef
| FieldDef | PParamDef → alloc d

| → () in
List .iter h ds

This calls a specified function alloc on each of the definitions in the list that
actually require runtime storage, omitting things like ConstDef that describe
‘compile-time’ constants.

A typical function passed as alloc is the one for allocating local variables
in a stack frame, defined (after removing register variables) by

let local alloc size d =
let r = d.d type.t rep in
align r .r align size;
size := !size + r .r size;
d.d addr ← Local (local base − !size)

This finds the concrete representation (size and alignment) of the type of
a definition d, rounds up the variable size to a multiple of the alignment,
then increases it by the size of the type. Because local variables are allocated
downwards in memory, the value of size is subtracted from local base to form
the address: that constant gives the offset (if any) between the frame base
and the area for local variables. On the ARM it is zero, as explained in an
ascii-art diagram in mach.ml.

Sorting local variables requires just a new variant of do alloc that sorts the
definitions before allocating, using an appropriate library function and a bit
of higher-order programming. It’s good to use the library function List .stable
sort , so as not to change gratuitously the order of variables that have the
same alignment. That function has type

val stable sort : (α → α → int) → α list → α list .

It takes a comparison function that maps two values to an indicator – pos-
itive, negative, or zero – saying how they compare. It’s possible to use
List .stable sort directly, but I prefer to introduce a function sort descending
that sorts using a simpler scoring function:

let sort descending score xs =
let cf x y = score y − score x in
List .stable sort cf xs

6 Implementing multi-level break and compact storage

We can then define sorted alloc by using the alignment as a scoring function,
then calling the original do alloc .

let sorted alloc alloc ds =
do alloc alloc (sort descending (fun d → d.d type.t rep.r align) ds)

It does no damage to include compile-time constants and other detritus with
the list ds, because after sorting they are just ignored by do alloc .

We cannot use sorted alloc everywhere do alloc was used before, because
some declarations, for example, formal parameters, must maintain their or-
der. But we can use it for the local variables of a procedure:

let rec check block level rt env (Block (ds, ss, fsize, nregv)) =
let env ′ = check decls ds (new block env) in
let defs = ref (top block env ′) in
let pre alloc d = defs := !defs @ [d] in
check bodies env ′ds;
return type := rt ;
check stmt ss env ′pre alloc 0;
sorted alloc (local alloc fsize) !defs;
align max align fsize

This code shows the mechanism (originally introduced to support register
variables) that uses a dummy function pre alloc to gather definitions first,
then sorts and allocates them later. The only changes here are to use sorted
alloc in place of do alloc , and to use the local alloc shown above that omits
register variables.

The sorted alloc function can also be used for record fields, and we can
additionally compute the necessary alignment for the whole record a bit more
carefully. For tidiness, it’s wise to ensure that the empty record type works
properly, even if the source language forbids it.

let max alignment defs =
List .fold left (fun md → max md.d type.t rep.r align) 1 defs

let rec check typexpr te env =
match te with

. . .
| Record fields →

let env ′ = check decls fields (new block env) in
let defs = top block env ′ in
let size = ref 0 in
sorted alloc (upward alloc size) defs;
let almt = max alignment defs in
align almt size;
let r = { r size = !size; r align = almt } in
mk type (RecordType defs) r

The changes here are to use sorted alloc in place of do alloc , and to compute
the alignment almt as the maximum alignment of any field (or 1 for the
empty record), using the helper function max alignment defined in terms of
List .fold left . We use the alignment for two purposes: first, to round up the
size to a multiple of the alignment, and second, to be the alignment of the

2 Compact storage 7

record type itself. Padding at the end of a record is still needed for a type
such as

record a: char; b: integer; c: char end,

which after sorting becomes the same as record b: integer; a, c: char end.
It will be represented by an eight-byte object containing the four-byte in-
teger b, two one-byte characters a and c, and two bytes of padding. The
padding is necessary so that in an array of records placed next to each other,
each individual record is properly aligned.

2.3 Results
Let’s see – relative to the baseline where register variables have been elim-
inated from the Lab 4 compiler – how the claimed improvements stack up.
First, the test case pack.p. Compiling with declaration sorting changes the
addresses that are used for local variables: for example, the first two lines
of the procedure body are translated1

@ a := chr(x); @ a := chr(x);
ldr r0, [fp, #40] ldr r0, [fp, #40]
strb r0, [fp, #-1] strb r0, [fp, #-9]

@ b := x + y; @ b := x + y;
ldr r0, [fp, #40] ldr r0, [fp, #40]
ldr r1, [fp, #44] ldr r1, [fp, #44]
add r0, r0, r1 add r0, r0, r1
str r0, [fp, #-8] str r0, [fp, #-4]

before (left) and after (right) the change. You can see that the addresses of the
parameters x and y are unchanged as +40 and +44 from the frame pointer,
but the locals a and b change their addresses from −1 and −8 to −9 and −4
because of the sorting by alignment. Sadly, the frame size of the procedure
is not reduced, because whereas before it was (1 + 3) + 4 + (1 + 3) + 4 = 16
bytes, after the change it becomes 4 + 4 + 1 + 1 = 10 bytes, but the size is
rounded up to a multiple of 8 to satisfy alignment requirements of the ARM
ABI, so the end result is unchanged.

The other test case fares better. Here, the object code (with -O) for an
assignment to r looks like this:

@ r[i].lo := s[2*i]; @ r[i].lo := s[2*i];
ldr r0, [fp, #40] ldr r0, [fp, #40]
ldr r1, [fp, #-4] ldr r1, [fp, #-4]
lsl r1, r1, #1 lsl r1, r1, #1
add r0, r0, r1 add r0, r0, r1
ldrb r0, [r0] ldrb r0, [r0]
set r1, _r set r1, _r
ldr r2, [fp, #-4] ldr r2, [fp, #-4]
lsl r2, r2, #2 lsl r2, r2, #1
add r1, r1, r2 add r1, r1, r2
strb r0, [r1] strb r0, [r1]

Note that the compiler, based on the original code for Lab 4, does not have
access to the reg + reg addressing mode; basing our work on the solution

1 I’ve shown the unoptimised code for simplicity.

8 Implementing multi-level break and compact storage

to Lab 4 would have given shorter but equivalent code. The only difference
between the two samples is in the addressing calculation for array r, which
multiplies i by 4 in one case, and by 2 in the other – because each element of
r has reduced from 4 bytes to 2. Such differences in the addressing calcula-
tions are the only differences between the code output by the two compilers
for the whole test case, apart from the assembly language directive that re-
serves space for r:

.comm _r, 40, 4 .comm _r, 20, 4

As each element has reduced from 4 bytes to 2, so has the whole array re-
duced from 40 bytes to 20.

A few of the existing test cases show minor improvements, though rarely
enough to decrease any actual frame sizes, once the 8-byte stack alignment
is taken into account. The test case sudoku.p, a solver for Sudoku problems
based on Knuth’s method of Dancing Links, shows a particularly satisfying
improvement, because there is a type ColRec of dynamically allocated records
that has a couple of single-byte fields, and shrinks from 32 to 28 bytes when
they are reordered. Even here the improvement may be illusory, because the
storage allocator may gain speed by providing only a limited number of sizes
for small blocks, and trading a little internal fragmentation for the increase
in speed and a decrease in external fragmentation. In this case, a size of 28
may well be rounded up to 32, a power of two and also a multiple of the
typical 16-byte cache line size.

3 Listings

Appended are two diff listings, one showing the changes needed to many
files to implement the multi-level break statement, and the other showing
the changes to check.ml needed to reduce the amount of padding between
variables and record fields.

break.diffs Tue Nov 07 22:42:23 2023 1

--- d1/check.ml 2023-10-08 16:05:22.255126557 +0100
+++ d2/check.ml 2023-10-08 16:05:22.263126218 +0100
@@ -288,13 +288,13 @@

 chk (List.sort compare vs)

 (* |check_stmt| -- check and annotate a statement *)
-let rec check_stmt s env alloc =
+let rec check_stmt s env alloc nest =
 err_line := s.s_line;
 match s.s_guts with
 Skip -> ()

 | Seq ss ->
- List.iter (fun s1 -> check_stmt s1 env alloc) ss
+ List.iter (fun s1 -> check_stmt s1 env alloc nest) ss

 | Assign (lhs, rhs) ->
 let lt = check_expr lhs env
@@ -328,17 +328,17 @@

 let ct = check_expr cond env in
 if not (same_type ct boolean) then
 sem_error "test in if statement must be a boolean" [];
- check_stmt thenpt env alloc;
- check_stmt elsept env alloc
+ check_stmt thenpt env alloc nest;
+ check_stmt elsept env alloc nest

 | WhileStmt (cond, body) ->
 let ct = check_expr cond env in
 if not (same_type ct boolean) then
 sem_error "type mismatch in while statement" [];
- check_stmt body env alloc
+ check_stmt body env alloc (nest+1)

 | RepeatStmt (body, test) ->
- check_stmt body env alloc;
+ check_stmt body env alloc (nest+1);
 let ct = check_expr test env in
 if not (same_type ct boolean) then
 sem_error "type mismatch in repeat statement" []
@@ -351,13 +351,19 @@

 || not (same_type hit integer) then
 sem_error "type mismatch in for statement" [];
 check_var var false;
- check_stmt body env alloc;
+ check_stmt body env alloc (nest+1);

 (* Allocate space for hidden variable. In the code, this will
 be used to save the upper bound. *)
 let d = make_def (intern "*upb*") VarDef integer in
 alloc d; upb := Some d

+ | Break n ->
+ if nest = 0 then
+ sem_error "break outside any loop" []
+ else if n < 1 || n > nest then
+ sem_error "break depth not in range" []
+
 | CaseStmt (sel, arms, deflt) ->
 let st = check_expr sel env in
 if not (discrete st) then
@@ -367,11 +373,11 @@

break.diffs Tue Nov 07 22:42:23 2023 2

 let (t1, v) = check_const lab env in
 if not (same_type t1 st) then
 sem_error "case label has wrong type" [];
- check_stmt body env alloc; v in
+ check_stmt body env alloc nest; v in

 let vs = List.map check_arm arms in
 check_dupcases vs;
- check_stmt deflt env alloc
+ check_stmt deflt env alloc nest

 (* TYPES AND DECLARATIONS *)
@@ -547,7 +553,7 @@

 let pre_alloc d = defs := !defs @ [d] in
 check_bodies env’ ds;
 return_type := rt;
- check_stmt ss env’ pre_alloc;
+ check_stmt ss env’ pre_alloc 0;
 do_alloc (local_alloc fsize) !defs;
 align max_align fsize

@@ -614,6 +620,6 @@

 return_type := voidtype;
 level := 1;
 let alloc = local_alloc fsize in
- check_stmt ss env alloc;
+ check_stmt ss env alloc 0;
 align max_align fsize;
 glodefs := top_block env
--- d1/tgen.ml 2023-10-08 15:18:06.787585264 +0100
+++ d2/tgen.ml 2023-10-08 16:05:22.263126218 +0100
@@ -250,12 +250,12 @@

 end

 (* |gen_stmt| -- generate code for a statement *)
-let rec gen_stmt s =
+let rec gen_stmt s brkstack =
 let code =
 match s.s_guts with
 Skip -> <NOP>

- | Seq ss -> <SEQ, @(List.map gen_stmt ss)>
+ | Seq ss -> <SEQ, @(List.map (fun s -> gen_stmt s brkstack) ss)>

 | Assign (v, e) ->
 if scalar v.e_type || is_pointer v.e_type then begin
@@ -280,10 +280,10 @@

 <SEQ,
 gen_cond test l1 l2,
 <LABEL l1>,
- gen_stmt thenpt,
+ gen_stmt thenpt brkstack,
 <JUMP l3>,
 <LABEL l2>,
- gen_stmt elsept,
+ gen_stmt elsept brkstack,
 <LABEL l3>>

 | WhileStmt (test, body) ->
@@ -294,7 +294,7 @@

 <LABEL l1>,

break.diffs Tue Nov 07 22:42:23 2023 3

 gen_cond test l2 l3,
 <LABEL l2>,
- gen_stmt body,
+ gen_stmt body (l3::brkstack),
 <JUMP l1>,
 <LABEL l3>>

@@ -302,7 +302,7 @@

 let l1 = label () and l2 = label () in
 <SEQ,
 <LABEL l1>,
- gen_stmt body,
+ gen_stmt body (l2::brkstack),
 gen_cond test l2 l1,
 <LABEL l2>>

@@ -316,11 +316,14 @@

 <STOREW, gen_expr hi, address tmp>,
 <LABEL l1>,
 <JUMPC (Gt, l2), gen_expr var, <LOADW, address tmp>>,
- gen_stmt body,
+ gen_stmt body (l2::brkstack),
 <STOREW, <BINOP Plus, gen_expr var, <CONST 1>>, gen_addr var>,
 <JUMP l1>,
 <LABEL l2>>

+ | Break n ->
+ <JUMP (List.nth brkstack (n-1))>
+
 | CaseStmt (sel, arms, deflt) ->
 (* Use one jump table, and hope it is reasonably compact *)
 let deflab = label () and donelab = label () in
@@ -330,13 +333,13 @@

 let gen_case lab (v, body) =
 <SEQ,
 <LABEL lab>,
- gen_stmt body,
+ gen_stmt body brkstack,
 <JUMP donelab>> in
 <SEQ,
 gen_jtable (gen_expr sel) table deflab,
 <SEQ, @(List.map2 gen_case labs arms)>,
 <LABEL deflab>,
- gen_stmt deflt,
+ gen_stmt deflt brkstack,
 <LABEL donelab>> in

 (* Label the code with a line number *)
@@ -373,7 +376,7 @@

 Regs.init ();
 let code0 =
 show "Initial code"
- (Optree.canonicalise <SEQ, gen_stmt body, <LABEL !retlab>>) in
+ (Optree.canonicalise <SEQ, gen_stmt body [], <LABEL !retlab>>) in
 let code1 =
 if !optlevel < 1 then code0 else
 show "After simplification" (Jumpopt.optimise (Simp.optimise code0)) in
--- d1/lexer.mll 2023-10-08 15:18:06.767585400 +0100
+++ d2/lexer.mll 2023-10-08 16:05:22.263126218 +0100
@@ -18,7 +18,7 @@

 ("type", TYPE); ("var", VAR); ("while", WHILE);
 ("pointer", POINTER); ("nil", NIL);

break.diffs Tue Nov 07 22:42:23 2023 4

 ("repeat", REPEAT); ("until", UNTIL); ("for", FOR);
- ("elsif", ELSIF); ("case", CASE);
+ ("elsif", ELSIF); ("case", CASE); ("break", BREAK);
 ("and", MULOP And); ("div", MULOP Div); ("or", ADDOP Or);
 ("not", NOT); ("mod", MULOP Mod)]

--- d1/parser.mly 2023-10-08 16:05:22.255126557 +0100
+++ d2/parser.mly 2023-10-08 16:05:22.263126218 +0100
@@ -23,6 +23,7 @@

 %token PROC RECORD RETURN THEN TO TYPE
 %token VAR WHILE NOT POINTER NIL
 %token REPEAT UNTIL FOR ELSIF CASE
+%token BREAK

 %type <Tree.program> program
 %start program
@@ -119,6 +120,8 @@

 | FOR name ASSIGN expr TO expr DO stmts END
 { let v = make_expr (Variable $2) in
 ForStmt (v, $4, $6, $8, ref None) }
+ | BREAK { Break 1 }
+ | BREAK NUMBER { Break $2 }
 | CASE expr OF arms else_part END { CaseStmt ($2, $4, $5) } ;

 elses :
--- d1/tree.ml 2023-10-08 15:18:06.791585236 +0100
+++ d2/tree.ml 2023-10-08 16:05:22.263126218 +0100
@@ -39,6 +39,7 @@

 | WhileStmt of expr * stmt
 | RepeatStmt of stmt * expr
 | ForStmt of expr * expr * expr * stmt * def option ref
+ | Break of int
 | CaseStmt of expr * (expr * stmt) list * stmt

 and expr =
@@ -148,6 +149,8 @@

 fMeta "(REPEAT $ $)" [fStmt body; fExpr test]
 | ForStmt (var, lo, hi, body, _) ->
 fMeta "(FOR $ $ $ $)" [fExpr var; fExpr lo; fExpr hi; fStmt body]
+ | Break n ->
+ fMeta "(BREAK $)" [fNum n]
 | CaseStmt (sel, arms, deflt) ->
 let fArm (lab, body) = fMeta "($ $)" [fExpr lab; fStmt body] in
 fMeta "(CASE $ $ $)" [fExpr sel; fList(fArm) arms; fStmt deflt]
--- d1/tree.mli 2023-10-08 15:18:06.803585155 +0100
+++ d2/tree.mli 2023-10-08 16:05:22.263126218 +0100
@@ -54,6 +54,7 @@

 | WhileStmt of expr * stmt
 | RepeatStmt of stmt * expr
 | ForStmt of expr * expr * expr * stmt * def option ref
+ | Break of int
 | CaseStmt of expr * (expr * stmt) list * stmt

 and expr =

sort.diffs Tue Nov 07 22:42:23 2023 1

--- d2/check.ml 2023-10-08 16:05:22.263126218 +0100
+++ d3/check.ml 2023-10-08 16:05:22.271125879 +0100
@@ -443,6 +443,19 @@

 let proc_symbol x =
 "_" ^ String.concat "." (List.rev_map spelling (x::!name_stack))

+(* |sort_descending| -- stable sort by descending score *)
+let sort_descending score xs =
+ let cf x y = score y - score x in
+ List.stable_sort cf xs
+
+(* |sorted_alloc| -- allocate in decreasing order of alignment *)
+let sorted_alloc alloc ds =
+ do_alloc alloc (sort_descending (fun d -> d.d_type.t_rep.r_align) ds)
+
+(* |max_alignment| -- maximum alignment for record fields *)
+let max_alignment defs =
+ List.fold_left (fun m d -> max m d.d_type.t_rep.r_align) 1 defs
+
 (* |check_typexpr| -- check a type expression, returning the ptype *)
 let rec check_typexpr te env =
 match te with
@@ -460,9 +473,10 @@

 let env’ = check_decls fields (new_block env) in
 let defs = top_block env’ in
 let size = ref 0 in
- do_alloc (upward_alloc size) defs;
- align max_align size;
- let r = { r_size = !size; r_align = max_align } in
+ sorted_alloc (upward_alloc size) defs;
+ let almt = max_alignment defs in
+ align almt size;
+ let r = { r_size = !size; r_align = almt } in
 mk_type (RecordType defs) r
 | Pointer te ->
 let t =
@@ -554,7 +568,7 @@

 check_bodies env’ ds;
 return_type := rt;
 check_stmt ss env’ pre_alloc 0;
- do_alloc (local_alloc fsize) !defs;
+ sorted_alloc (local_alloc fsize) !defs;
 align max_align fsize

 (* |check_bodies| -- check bodies of procedure declarations *)

