
Simultaneous assignment

Mike Spivey, October 2022

This year’s Christmas Assignment asks for an implementation of simultane-
ous assignment. a construct that allows the values of multiple expressions to
be assigned, as if simultaneously, to multiple variables. The simplest useful
example would be

x, y := y, x

which swaps the values of variables x and y without explicitly needing a
temporary variable to hold the old value of one of the variables while the
new value is being assigned, though behind the scenes we would expect it to
be implemented that way. Another simple example might occur in a program
for Fibonacci numbers:

x, y := y, x+y

If x and y have the values of Fn and Fn+1, then this simultaneous assignment
sets them to Fn+1 and Fn+2.

More complicated examples might use array or pointer variables. For ex-
ample, the assignment

i, a[i] := a[i], i

could usefully swap the contents of the cell i with the cell initially denoted
by a[i]. Implementing this faithfully will require us to ensure that the cell
denoted by a[i] on the left-hand side is found using the old value of i, so is
the same as the one used on the right. (Python does not do this.)

We will also want to use the assignment

a[i], a[j] := a[j], a[i]

to swap two element of an array, with the statement doing nothing if i and j
are equal. This effect arises naturally if the implementation introduces an
implicit temporary variable to hold the value of one element while it is being
changed. In fact, we will use two registers as temps to hold both values, like
this:

t := a[j]; u := a[i]; a[i] := t; a[j] := u

That is just as efficient when each value must be held in a register just before
it is stored in memory.

Copyright © 2022 J. M. Spivey 1

2 Simultaneous assignment

Programs that manipulate pointer-linked structures commonly depend on
pointer rotations to modify the structures. For example, in destructively re-
versing a linked list, we would iteratively nibble items from the front of the
input list p and insert them at the start of an output list q. One such step is
expressed by the simultaneous assignment,

p, p↑.tail, q := p↑.tail, q, p

Here, as in a previous example, we rely on the cells denoted on the left-hand
side being the same as those on the right, with the old value of p used to find
p↑.next. Another example is rotating a binary tree at the root, so that what
was the left child of the root moves up, and what was the root node moves
down to become its right child. If p points to the root, then this is achieved
by the assignment,

p, p↑.left, p↑.left↑.right := p↑.left, p↑.left↑.right, p

That’s a bit obscure, and the movements become clearer if we introduce a
name q for the left child that moves up:

q := p↑.left;
p↑.left := q↑.right;
q↑.right := p;
p := q

So perhaps in this case, the simultaneous assignment is best avoided for the
sake of a human reader, even if our compiler can make sense of it.

1 Initial implementation

As usual, we will follow the implementation through the compiler one pass
at a time. In the abstract syntax, I chose to keep the existing assignment
statement and add simultaneous assignment as an option alongside it. This
simplifies the subsequent treatment, as copying of aggregates will be sup-
ported in a single assignment, but not in simultaneous assignments.

and stmt guts =
. . .

| Assign of expr ∗ expr
| SimAssign of (expr ∗ expr) list
| . . .

Despite the concrete syntax which suggests a pair of lists, it seems best to
make the abstract syntax a list of pairs. Checking that the two lists have the
same length then becomes a clear syntactic matter.

No extensions are needed in the lexer, because all the punctuation marks
used in simultaneous assignments are already present. In the parser, we
need to relax the syntax of assignments to allow a list of variables on one
side and a list of expressions on the other.

stmt1 :
. . .

| var list Assign expr list { assign $1 $3 }
| . . .

1 Initial implementation 3

var list :
variable { [$1] }

| variable Comma var list { $1 :: $3 } ;

Somewhat tediously, we must spell out the syntax of comma-separated lists
of variables.

The semantic action uses a new helper function assign, defined in the
preamble of parser.mly, that checks the two lists match in length, and builds
either an Assign or a SimAssign node, depending on whether both lists have
a single item.

let assign vs es =
let n = List .length vs in
if List .length es ≠ n then

parse error "wrong number of expressions";
if n = 1 then

Assign (List .hd vs, List .hd es)
else

SimAssign (List .combine vs es)

Semantic analysis (module Check) is not too hard: in each component of
the assignment, we must recursively check the variable and expression, then
check that they have the same type, and that this type is a scalar or pointer
type.

let rec check stmt s env alloc =
err line := s.s line;
match s.s guts with

. . .
| SimAssign pairs →

let check (lhs, rhs) =
let lt = check expr lhs env
and rt = check expr rhs env in
check var lhs false;
if not (same type lt rt) then

sem error "type mismatch in simult assignment" [];
if not (scalar lt ‖ is pointer lt) then

sem error "aggregates not allowed" [] in
List .iter check pairs

| . . .

In generating intermediate code, we start to face some harder choices. Our
basic approach is to evaluate all the right-hand side expressions into tempo-
rary registers, then to begin storing these values into locations denoted by the
left-hand sides. For the temporary registers, we will use the same 〈Temp n〉
nodes that are introduced in the common subexpression elimination pass
of the compiler, but they will now start to appear in its input as well as its
output.

To make a start, let’s ignore the problem that the LHS addresses might
change as values are stored, and just pre-evaluate the expressions on the
right. The relevant code is added in the TGen module, in function gen stmt .

(∗ gen stmt – generate code for a statement ∗)
let rec gen stmt s =

4 Simultaneous assignment

let code =
match s.s guts with

. . .
| SimAssign pairs →

let temps =
(∗ List of temps for RHS values ∗)
List .map (fun → Regs.new temp 1) pairs in

〈Seq ,
(∗ Save the RHS values ∗)
〈Seq ,@(List .map2 (fun (v, e) t →
〈Deftemp t, gen expr e〉) pairs temps)〉,

(∗ Perform the stores ∗)
〈Seq ,@(List .map2 (fun (v, e) t →

let st =
if size of v.e type = 1 then Storec else Storew in

〈st , 〈Temp t〉, g〉) pairs temps)〉〉

Higher-order functions are helpful here, and we use both the familiar func-
tion List .map, whose type is

List .map : (α → β) → α list → β list ,

but also the function List .map2 (which Haskell calls zipWith), with type

List .map2 : (α → β → γ) → α list → β list → γ list .

There are three steps:

• First, allocate a temp for each expression on the RHS. These temps all
have a reference count of 1, because their values will each be used just
once to assign to the corresponding LHS variable.

• Next, generate code that defines each temp with the value of the corre-
sponding expression.

• Finally, generate code that stores the values from the temps into ex-
pressions on the LHS.

One further adjustment was added to the lab kit in advance of this assign-
ment. The function Tgen.do proc conducts a single procedure through the
phases of generating intermediate code, optimising the code, and feeding it
into the back-end function Tran.translate. It contains a call to Regs.init ()
that initialises the register allocator. Because generating intermediate code
can now involve allocating temps, that call must appear before the call to
gen stmt that produces code for the procedure body.

We need make no changes to the back end, for the compiler to translate
successfully simple instances of simultaneous assignment.

2 Refining the implementation

The implementation presented so far can compile simple examples, but it
cannot deal with examples where assigning to some of the LHS variables can
affect the locations denoted by others. A naive solution to this would be
to compute all the addresses of LHS variables into temps in addition to the

2 Refining the implementation 5

values of RHS expressions. This would work for some examples, but has
three problems:

• Register locals do not have a numeric address, so it isn’t possible to
compute their addresses into temps.

• Evaluating all the addresses into temps means that two temps will be
needed for each component of the assignment, increasing the danger
of running out of registers.

• Precomputing addresses into registers prevents the use of more pow-
erful addressing modes in the store instructions.

To overcome these difficulties, we can formulate a plan where only some left-
hand side variables have their addresses precomputed. For each variable, we
will form two fragments of code: a fragment f that may define a temp, and
a fragment g that uses the temp (if any) to form the address of the variable.
We can consider various cases for a variable v :

• If v is a simple variable, then f can be a no-op, and we use the code
gen addr v for g. This case covers register variables without requiring
them to have a numeric address.

• If v is any other variable, then we can make f compute its address into
a temp:

〈Deftemp t, gen addr v〉,

then make g be just 〈Temp t〉. However, to improve the treatment of
some common, simple cases, we can add two further rules.

• If v has the form a[e], where a is an array variable, then we can make
fragment f compute the value of e into a temp, then perform the sub-
script calculation in fragment g.

• If v is a field selection r .x, then we can make fragment f compute the
address of record r , and have fragment g add the offset of field x.

To implement the third and fourth rules, it’s convenient to extract the ad-
dress calculations for subscripts and record fields from the compiler function
gen addr as two subroutines subscript and select that can be reused in the
implementation of simultaneous assignment.

Here’s my implementation of prep addr :

(∗ prep addr – prepare LHS of simultaneous assignment ∗)
let prep addr v =

let s = size of v.e type in
match v.e guts with

Variable →
(∗ A simple variable – fixed address ∗)
(s, 〈Nop〉, gen addr v)

| Sub ({ e guts = Variable } as a, e1) →
(∗ A subscript a[i] – save the value of i ∗)
let t = Regs.new temp 1 in
(s, 〈Deftemp t, gen expr e1〉,

subscript a 〈Temp t〉)
| Select (r , x) →

6 Simultaneous assignment

(∗ A selection r.x – save the address of r ∗)
let t = Regs.new temp 1 in
(s, 〈Deftemp t, gen addr r〉, select 〈Temp t〉 x)

| →
(∗ General case – save the address of v ∗)
let t = Regs.new temp 1 in
(s, 〈Deftemp t, gen addr v〉, 〈Temp t〉)

This function, in addition to the code fragments f and g, returns also the
size of the value being assigned, to help choose a store instruction. Here is
an improved case for gen stmt that uses the new treatment for the LHS.

(∗ gen stmt – generate code for a statement ∗)
let rec gen stmt s =

let code =
match s.s guts with

. . .
| SimAssign pairs →

let temps =
(∗ List of temps for RHS values ∗)
List .map (fun → Regs.new temp 1) pairs in

let addrs =
(∗ List of (s, f, g) triples for the LHS ∗)
List .map (fun (v, e) → prep addr v) pairs in

〈Seq ,
(∗ Save the RHS values ∗)
〈Seq ,@(List .map2 (fun (v, e) t →
〈Deftemp t, gen expr e〉) pairs temps)〉,

(∗ Save what’s needed for the LHS ∗)
〈Seq ,@(List .map (fun (s, f , g) → f) addrs)〉,
(∗ Perform the stores ∗)
〈Seq ,@(List .map2 (fun (s, f , g) t →

let st = if s = 1 then Storec else Storew in
〈st , 〈Temp t〉, g〉) addrs temps)〉〉

| . . .

An applicative approach pays dividends here, because it permits us to com-
pute separately the f and g trees for each element and then incorporate them
later into a tree for the whole construct.

3 Evaluation

The simplest example is

x, y := y, x

where x and y are register variables. Our implementation produces the fol-
lowing code.

mov r6, r4
mov r4, r5
mov r5, r6

3 Evaluation 7

The values of x and y first become the values of two temps, with the temps
simply sharing the same registers. Then there’s an assignment of the value
of y to the register variable x, which first spills the temp living in x into
another register r6. The first mov instruction is the spill, and the second is
the assignment to x. The last move assigns to y from the spilled temp.

Let’s now look at a different example, the assignment i, a[i] := a[i], i, where
i is a register variable. Our compiler generates the following code.1

ldr r5, =_a
ldr r6, [r5, r4, LSL #2]
mov r7, r4
mov r4, r6
str r7, [r5, r7, LSL #2]

Again, a temp shares r4 with the register variable i, and it is spilled before as-
signing to i. The spill could be avoided by swapping the last two instructions
and eliminating r7, but some extra moves between registers are inevitable if
the compiler does things in a fixed order.

For the swap a[i], a[j] := a[j], a[i], our compiler generates the attractive
code,

ldr r6, =_a
ldr r7, [r6, r5, LSL #2]
ldr r8, [r6, r4, LSL #2]
str r7, [r6, r4, LSL #2]
str r8, [r6, r5, LSL #2]

(again, this is with the addressing improvements introduced in the solution
to Lab 4, and with the taming of excessive CSE that formed part of last year’s
assignment.)

Two test cases provided as part of the solution implement destructive list
reversal and tree rotation, the two pointer-based examples in the introduc-
tion. For destructive reversal, the assignment

p, p↑.tail, q := p↑.tail, q, p

results in the code

ldr r6, [r4, #4]
mov r7, r4
mov r4, r6
str r5, [r7, #4]
mov r5, r7

As before, this contains a redundant register-to-register move, but is other-
wise acceptable.

Similarly, the tree rotation

p, p↑.left, p↑.left↑.right := p↑.left, p↑.left↑.right, p

results in code that has just one redundant move:

ldr r6, [r5, #4]

1 The code given here uses a compiler based on the solution to Lab4, and is able to use the
addressing mode that adds two registers with an optional shift. Participants basing their
work on the unenhanced compiler will see less good code.

8 Simultaneous assignment

ldr r7, [r6, #8]
mov r8, r5
mov r5, r6
str r7, [r8, #4]
str r8, [r6, #8]

Common subexpression elimination has had a good effect here in avoiding
redundant loads.

diffs Tue Nov 07 22:42:23 2023 1

--- ../../labs/lab4s/check.ml 2023-10-05 17:08:52.117515957 +0100
+++ check.ml 2023-10-20 16:24:04.372065652 +0100
@@ -306,6 +306,17 @@

 if not (same_type lt rt) then
 sem_error "type mismatch in assignment" []

+ | SimAssign pairs ->
+ let check (lhs, rhs) =
+ let lt = check_expr lhs env
+ and rt = check_expr rhs env in
+ check_var lhs false;
+ if not (same_type lt rt) then
+ sem_error "type mismatch in simult assignment" [];
+ if not (scalar lt || is_pointer lt) then
+ sem_error "simult assignment not allowed for aggregates" [] in
+ List.iter check pairs
+
 | ProcCall (p, args) ->
 let rt = check_funcall p args env (ref None) in
 if rt <> voidtype then
--- ../../labs/lab4s/parser.mly 2023-10-05 17:08:52.133516753 +0100
+++ parser.mly 2023-10-20 16:24:04.372065652 +0100
@@ -29,6 +29,15 @@

 %{
 let const n t = make_expr (Constant (n, t))
+
+let assign vs es =
+ let n = List.length vs in
+ if List.length es <> n then
+ parse_error "Wrong number of expressions in simultaneous assignment";
+ if n = 1 then
+ Assign (List.hd vs, List.hd es)
+ else
+ SimAssign (List.combine vs es)
 %}

 %%
@@ -110,7 +119,7 @@

 stmt1 :
 /* empty */ { Skip }
- | variable ASSIGN expr { Assign ($1, $3) }
+ | var_list ASSIGN expr_list { assign $1 $3 }
 | name actuals { ProcCall ($1, $2) }
 | RETURN expr_opt { Return $2 }
 | IF expr THEN stmts elses END { IfStmt ($2, $4, $5) }
@@ -185,6 +194,10 @@

 | variable DOT name { make_expr (Select ($1, $3)) }
 | variable ARROW { make_expr (Deref $1) } ;

+var_list :
+ variable { [$1] }
+ | variable COMMA var_list { $1 :: $3 } ;
+
 typexpr :
 name { TypeName $1 }
 | ARRAY expr OF typexpr { Array ($2, $4) }
--- ../../labs/lab4s/tgen.ml 2023-10-20 16:13:52.955228646 +0100
+++ tgen.ml 2023-10-20 16:25:46.832911439 +0100
@@ -93,14 +93,9 @@

 failwith "load_addr"

diffs Tue Nov 07 22:42:23 2023 2

 end
 | Sub (a, i) ->
- let bound_check t =
- if not !boundchk then t else <BOUND, t, <CONST (bound a.e_type)>> in
- <OFFSET,
- gen_addr a,
- <BINOP Times, bound_check (gen_expr i), <CONST (size_of v.e_type)>>>
+ subscript a (gen_expr i)
 | Select (r, x) ->
- let d = get_def x in
- <OFFSET, gen_addr r, <CONST (offset_of d)>>
+ select (gen_addr r) x
 | Deref p ->
 let null_check t =
 if not !boundchk then t else <NCHECK, t> in
@@ -108,6 +103,16 @@

 | String (lab, n) -> <GLOBAL lab>
 | _ -> failwith "gen_addr"

+and subscript a i =
+ let ty = base_type a.e_type in
+ <OFFSET, gen_addr a,
+ <BINOP Times,
+ if not !boundchk then i else <BOUND, i, <CONST (bound a.e_type)>>,
+ <CONST (size_of ty)>>>
+
+and select a x =
+ let d = get_def x in <OFFSET, a, <CONST (offset_of d)>>
+
 (* |gen_expr| -- tree for the value of an expression *)
 and gen_expr e =
 match e.e_value with
@@ -240,6 +245,30 @@

 <BINOP Minus, sel, <CONST lobound>>>
 end

+(* |prep_addr| -- prepare LHS of simultaneous assignment *)
+let prep_addr (v, _) =
+ (* Return (s, f, g) where s is the value size,
+ f defines any temps needed to preserve the address of v,
+ g produces the address of v for storing. *)
+ let s = size_of v.e_type in
+ match v.e_guts with
+ Variable _ ->
+ (* A simple variable -- fixed address *)
+ (s, <NOP>, gen_addr v)
+ | Sub ({ e_guts = Variable _ } as a, e1) ->
+ (* A subscript a[i] -- save the value of i *)
+ let t = Regs.new_temp () in
+ (s, <DEFTEMP t, gen_expr e1>,
+ subscript a <TEMP t>)
+ | Select (r, x) ->
+ (* A selection r.x -- save the address of r *)
+ let t = Regs.new_temp () in
+ (s, <DEFTEMP t, gen_addr r>, select <TEMP t> x)
+ | _ ->
+ (* General case -- save the address of v *)
+ let t = Regs.new_temp () in
+ (s, <DEFTEMP t, gen_addr v>, <TEMP t>)
+
 (* |gen_stmt| -- generate code for a statement *)
 let rec gen_stmt s =

diffs Tue Nov 07 22:42:23 2023 3

 let code =
@@ -256,6 +285,24 @@

 gen_copy (gen_addr v) (gen_addr e) (size_of v.e_type)
 end

+ | SimAssign pairs ->
+ let temps =
+ (* List of temps for RHS values *)
+ List.map (fun _ -> Regs.new_temp ()) pairs in
+ let addrs =
+ (* List of (s, f, g) triples for the LHS *)
+ List.map prep_addr pairs in
+ <SEQ,
+ (* Save the RHS values *)
+ <SEQ, @(List.map2 (fun (v, e) t ->
+ <DEFTEMP t, gen_expr e>) pairs temps)>,
+ (* Save what’s needed for the LHS *)
+ <SEQ, @(List.map (fun (s, f, g) -> f) addrs)>,
+ (* Perform the stores *)
+ <SEQ, @(List.map2 (fun (s, f, g) t ->
+ let st = if s = 1 then STOREC else STOREW in
+ <st, <TEMP t>, g>) addrs temps)>>
+
 | ProcCall (p, args) ->
 gen_call p args

--- ../../labs/lab4s/tree.ml 2023-10-05 17:08:52.125516354 +0100
+++ tree.ml 2023-10-20 16:24:04.372065652 +0100
@@ -33,6 +33,7 @@

 Skip
 | Seq of stmt list
 | Assign of expr * expr
+ | SimAssign of (expr * expr) list
 | ProcCall of name * expr list
 | Return of expr option
 | IfStmt of expr * stmt * stmt
@@ -137,6 +138,9 @@

 Skip -> fStr "(SKIP)"
 | Seq stmts -> fMeta "(SEQ$)" [fTail(fStmt) stmts]
 | Assign (e1, e2) -> fMeta "(ASSIGN $ $)" [fExpr e1; fExpr e2]
+ | SimAssign pairs ->
+ let f (e1, e2) = fMeta "($ $)" [fExpr e1; fExpr e2] in
+ fMeta "(SIMASSIGN $)" [fList(f) pairs]
 | ProcCall (p, aps) -> fMeta "(CALL $$)" [fName p; fTail(fExpr) aps]
 | Return (Some e) -> fMeta "(RETURN $)" [fExpr e]
 | Return None -> fStr "(RETURN)"
--- ../../labs/lab4s/tree.mli 2023-10-05 17:08:52.129516553 +0100
+++ tree.mli 2023-10-20 16:24:04.372065652 +0100
@@ -48,6 +48,7 @@

 Skip
 | Seq of stmt list
 | Assign of expr * expr
+ | SimAssign of (expr * expr) list
 | ProcCall of name * expr list
 | Return of expr option
 | IfStmt of expr * stmt * stmt

reverse.p Sun Oct 08 15:20:58 2023 1

type list = pointer to cell;
 cell = record head: char; tail: list end;

proc reverse(a: list): list;
 var p, q: list;
begin
 p, q := a, nil;
 while p <> nil do
 p, p^.tail, q := p^.tail, q, p
 end;
 return q
end;

proc test();
 const mike = "mike";

 var i: integer; p, q: list;
begin
 p := nil; i := 0;
 while mike[i] <> chr(0) do
 new(q);
 p, q^.head, q^.tail, i := q, mike[i], p, i+1
 end;

 p := reverse(p);

 q := p;
 while q <> nil do
 print_char(q^.head);
 q := q^.tail
 end;
 newline()
end;

begin test() end.

(*<<
mike
>>*)

(*[[
@ picoPascal compiler output
 .global pmain

@ proc reverse(a: list): list;
 .text
_reverse:
 mov ip, sp
 stmfd sp!, {r0-r1}
 stmfd sp!, {r4-r10, fp, ip, lr}
 mov fp, sp
@ p, q := a, nil;
 ldr r6, [fp, #40]
 mov r7, #0
 mov r4, r6
 mov r5, r7
.L3:
@ while p <> nil do
 cmp r4, #0
 beq .L5
@ p, p^.tail, q := p^.tail, q, p
 ldr r6, [r4, #4]

reverse.p Sun Oct 08 15:20:58 2023 2

 mov r7, r4
 mov r4, r6
 str r5, [r7, #4]
 mov r5, r7
 b .L3
.L5:
@ return q
 mov r0, r5
 ldmfd fp, {r4-r10, fp, sp, pc}
 .pool

@ proc test();
_test:
 mov ip, sp
 stmfd sp!, {r4-r10, fp, ip, lr}
 mov fp, sp
@ p := nil; i := 0;
 mov r5, #0
 mov r4, #0
.L7:
@ while mike[i] <> chr(0) do
 ldr r7, =g1
 ldrb r0, [r7, r4]
 cmp r0, #0
 beq .L9
@ new(q);
 mov r0, #8
 bl new
 mov r6, r0
@ p, q^.head, q^.tail, i := q, mike[i], p, i+1
 ldrb r7, [r7, r4]
 add r8, r4, #1
 mov r9, r5
 mov r5, r6
 strb r7, [r6]
 str r9, [r6, #4]
 mov r4, r8
 b .L7
.L9:
@ p := reverse(p);
 mov r0, r5
 bl _reverse
 mov r5, r0
@ q := p;
 mov r6, r5
.L10:
@ while q <> nil do
 cmp r6, #0
 beq .L12
@ print_char(q^.head);
 ldrb r0, [r6]
 bl print_char
@ q := q^.tail
 ldr r6, [r6, #4]
 b .L10
.L12:
@ newline()
 bl newline
 ldmfd fp, {r4-r10, fp, sp, pc}
 .pool

pmain:

reverse.p Sun Oct 08 15:20:58 2023 3

 mov ip, sp
 stmfd sp!, {r4-r10, fp, ip, lr}
 mov fp, sp
@ begin test() end.
 bl _test
 ldmfd fp, {r4-r10, fp, sp, pc}
 .pool

 .data
g1:
 .byte 109, 105, 107, 101
 .byte 0
@ End
]]*)

sumtree.p Sun Oct 08 15:20:58 2023 1

type ptr = pointer to node;
 node = record data: integer; left, right: ptr end;

var u: array 10 of integer;

proc setu();
begin
 u[0] := 3; u[1] := 1; u[2] := 4; u[3] := 1;
 u[4] := 5; u[5] := 9; u[6] := 2; u[7] := 6;
 u[8] := 5; u[9] := 3
end;

proc mktree(a, b: integer): ptr;
 var m: integer; p: ptr;
begin
 if a >= b then
 return nil
 else
 m := (a+b) div 2;
 new(p);
 p^.data, p^.left, p^.right :=
 u[a], mktree(a+1, m+1), mktree(m+1, b);
 return p
 end
end;

proc print(p: ptr);
begin
 if p = nil then
 print_char(’.’)
 else
 print_num(p^.data); print(p^.left); print(p^.right)
 end
end;

(*
 A B
 / \ / \
 B 3 1 A
 / \ / \
1 2 2 3
*)

proc sum(p: ptr): integer;
 var s: integer; q: ptr;
begin
 s, q := 0, p;
 while q <> nil do
 while q^.left <> nil do
 q, q^.left, q^.left^.right := q^.left, q^.left^.right, q
 end;
 s, q := s + q^.data, q^.right
 end;
 return s
end;

var t: ptr;

begin
 setu();
 t := mktree(0, 10);
 print(t); newline();

sumtree.p Sun Oct 08 15:20:58 2023 2

 print_num(sum(t)); newline()
end.

(*<<
3141...59...265...3..
39
>>*)

(*[[
@ picoPascal compiler output
 .global pmain

@ proc setu();
 .text
_setu:
 mov ip, sp
 stmfd sp!, {r4-r10, fp, ip, lr}
 mov fp, sp
@ u[0] := 3; u[1] := 1; u[2] := 4; u[3] := 1;
 ldr r4, =_u
 mov r0, #3
 str r0, [r4]
 mov r0, #1
 str r0, [r4, #4]
 mov r0, #4
 str r0, [r4, #8]
 mov r0, #1
 str r0, [r4, #12]
@ u[4] := 5; u[5] := 9; u[6] := 2; u[7] := 6;
 mov r0, #5
 str r0, [r4, #16]
 mov r0, #9
 str r0, [r4, #20]
 mov r0, #2
 str r0, [r4, #24]
 mov r0, #6
 str r0, [r4, #28]
@ u[8] := 5; u[9] := 3
 mov r0, #5
 str r0, [r4, #32]
 mov r0, #3
 str r0, [r4, #36]
 ldmfd fp, {r4-r10, fp, sp, pc}
 .pool

@ proc mktree(a, b: integer): ptr;
_mktree:
 mov ip, sp
 stmfd sp!, {r0-r1}
 stmfd sp!, {r4-r10, fp, ip, lr}
 mov fp, sp
@ if a >= b then
 ldr r0, [fp, #40]
 ldr r1, [fp, #44]
 cmp r0, r1
 blt .L4
@ return nil
 mov r0, #0
 b .L2
.L4:
@ m := (a+b) div 2;
 mov r1, #2

sumtree.p Sun Oct 08 15:20:58 2023 3

 ldr r0, [fp, #40]
 ldr r2, [fp, #44]
 add r0, r0, r2
 bl int_div
 mov r4, r0
@ new(p);
 mov r0, #12
 bl new
 mov r5, r0
@ p^.data, p^.left, p^.right :=
 ldr r6, [fp, #40]
 ldr r0, =_u
 ldr r7, [r0, r6, LSL #2]
 add r1, r4, #1
 add r0, r6, #1
 bl _mktree
 ldr r1, [fp, #44]
 mov r6, r0
 add r0, r4, #1
 bl _mktree
 str r7, [r5]
 str r6, [r5, #4]
 str r0, [r5, #8]
@ return p
 mov r0, r5
.L2:
 ldmfd fp, {r4-r10, fp, sp, pc}
 .pool

@ proc print(p: ptr);
_print:
 mov ip, sp
 stmfd sp!, {r0-r1}
 stmfd sp!, {r4-r10, fp, ip, lr}
 mov fp, sp
@ if p = nil then
 ldr r0, [fp, #40]
 cmp r0, #0
 bne .L8
@ print_char(’.’)
 mov r0, #46
 bl print_char
 b .L6
.L8:
@ print_num(p^.data); print(p^.left); print(p^.right)
 ldr r0, [fp, #40]
 ldr r0, [r0]
 bl print_num
 ldr r0, [fp, #40]
 ldr r0, [r0, #4]
 bl _print
 ldr r0, [fp, #40]
 ldr r0, [r0, #8]
 bl _print
.L6:
 ldmfd fp, {r4-r10, fp, sp, pc}
 .pool

@ proc sum(p: ptr): integer;
_sum:
 mov ip, sp
 stmfd sp!, {r0-r1}

sumtree.p Sun Oct 08 15:20:58 2023 4

 stmfd sp!, {r4-r10, fp, ip, lr}
 mov fp, sp
@ s, q := 0, p;
 mov r6, #0
 ldr r7, [fp, #40]
 mov r4, r6
 mov r5, r7
.L11:
@ while q <> nil do
 cmp r5, #0
 beq .L13
.L14:
@ while q^.left <> nil do
 ldr r6, [r5, #4]
 cmp r6, #0
 beq .L16
@ q, q^.left, q^.left^.right := q^.left, q^.left^.right, q
 ldr r7, [r6, #8]
 mov r8, r5
 mov r5, r6
 str r7, [r8, #4]
 str r8, [r6, #8]
 b .L14
.L16:
@ s, q := s + q^.data, q^.right
 ldr r0, [r5]
 add r6, r4, r0
 ldr r7, [r5, #8]
 mov r4, r6
 mov r5, r7
 b .L11
.L13:
@ return s
 mov r0, r4
 ldmfd fp, {r4-r10, fp, sp, pc}
 .pool

pmain:
 mov ip, sp
 stmfd sp!, {r4-r10, fp, ip, lr}
 mov fp, sp
@ setu();
 bl _setu
@ t := mktree(0, 10);
 mov r1, #10
 mov r0, #0
 bl _mktree
 ldr r4, =_t
 str r0, [r4]
@ print(t); newline();
 bl _print
 bl newline
@ print_num(sum(t)); newline()
 ldr r0, [r4]
 bl _sum
 bl print_num
 bl newline
 ldmfd fp, {r4-r10, fp, sp, pc}
 .pool

 .comm _u, 40, 4
 .comm _t, 4, 4

sumtree.p Sun Oct 08 15:20:58 2023 5

@ End
]]*)

unravel.p Sun Oct 08 15:20:58 2023 1

var u: array 10 of integer;

proc unravel(a: integer);
 var i: integer;
begin
 i := a;
 while u[i] <> i do
 i, u[i] := u[i], i
 end
end;

proc setu();
begin
 u[0] := 3; u[1] := 1; u[2] := 4; u[3] := 1;
 u[4] := 5; u[5] := 9; u[6] := 2; u[7] := 6;
 u[8] := 5; u[9] := 3
end;

proc print();
 var i: integer;
begin
 for i := 0 to 9 do
 print_char(’ ’); print_num(u[i])
 end;
 newline()
end;

begin
 setu();
 unravel(8);
 print()
end.

(*<<
 3 1 4 3 5 5 2 6 8 9
>>*)

(*[[
@ picoPascal compiler output
 .global pmain

@ proc unravel(a: integer);
 .text
_unravel:
 mov ip, sp
 stmfd sp!, {r0-r1}
 stmfd sp!, {r4-r10, fp, ip, lr}
 mov fp, sp
@ i := a;
 ldr r4, [fp, #40]
.L2:
@ while u[i] <> i do
 ldr r5, =_u
 ldr r6, [r5, r4, LSL #2]
 cmp r6, r4
 beq .L1
@ i, u[i] := u[i], i
 mov r7, r4
 mov r4, r6
 str r7, [r5, r7, LSL #2]
 b .L2
.L1:

unravel.p Sun Oct 08 15:20:58 2023 2

 ldmfd fp, {r4-r10, fp, sp, pc}
 .pool

@ proc setu();
_setu:
 mov ip, sp
 stmfd sp!, {r4-r10, fp, ip, lr}
 mov fp, sp
@ u[0] := 3; u[1] := 1; u[2] := 4; u[3] := 1;
 ldr r4, =_u
 mov r0, #3
 str r0, [r4]
 mov r0, #1
 str r0, [r4, #4]
 mov r0, #4
 str r0, [r4, #8]
 mov r0, #1
 str r0, [r4, #12]
@ u[4] := 5; u[5] := 9; u[6] := 2; u[7] := 6;
 mov r0, #5
 str r0, [r4, #16]
 mov r0, #9
 str r0, [r4, #20]
 mov r0, #2
 str r0, [r4, #24]
 mov r0, #6
 str r0, [r4, #28]
@ u[8] := 5; u[9] := 3
 mov r0, #5
 str r0, [r4, #32]
 mov r0, #3
 str r0, [r4, #36]
 ldmfd fp, {r4-r10, fp, sp, pc}
 .pool

@ proc print();
_print:
 mov ip, sp
 stmfd sp!, {r4-r10, fp, ip, lr}
 mov fp, sp
@ for i := 0 to 9 do
 mov r4, #0
 mov r5, #9
.L7:
 cmp r4, r5
 bgt .L8
@ print_char(’ ’); print_num(u[i])
 mov r0, #32
 bl print_char
 ldr r0, =_u
 ldr r0, [r0, r4, LSL #2]
 bl print_num
 add r4, r4, #1
 b .L7
.L8:
@ newline()
 bl newline
 ldmfd fp, {r4-r10, fp, sp, pc}
 .pool

pmain:
 mov ip, sp

unravel.p Sun Oct 08 15:20:58 2023 3

 stmfd sp!, {r4-r10, fp, ip, lr}
 mov fp, sp
@ setu();
 bl _setu
@ unravel(8);
 mov r0, #8
 bl _unravel
@ print()
 bl _print
 ldmfd fp, {r4-r10, fp, sp, pc}
 .pool

 .comm _u, 40, 4
@ End
]]*)

