
University of Oxford

Department of Computer Science

Compilers – Practical Assignment
December 2017

Your report on this assignment should be submitted to the Examination Schools,
High Street by 12 noon on Friday, 26th January. The assignment is worth 35
marks out of a total of 100 marks for the course.

This assignment is based on the compiler from a Pascal subset to code for the
ARM that was the subject of Lab 4 in the course. It asks you to replace the
for loop that is supported by that compiler with a replica of the for loop of
Algol 60, as described in the part of the defining document reproduced below.

To carry out the assignment, you will need access to a Unix environment
containing version control tools, an OCaml compiler, software tools that enable
cross-compiling for the ARM, an ARM emulator, and other support software.
Hints and resources for setting up such an environment are provided on the
course web page.

A fresh copy of the practical materials for the course may be obtained (in a
directory named task) by cloning the Mercurial repository supplied for the lab
exercises, with the command

$ hg clone http://spivey.oriel.ox.ac.uk/hg/compilers task

or the identical Git repository with

$ git clone \

http://spivey.oriel.ox.ac.uk/git/compilers.git task

The materials are also available on the course web page.
Candidates are required to submit a written report, describing the changes

they made to the compiler in order to support the enhanced for loop, and the
provisions they have made for testing the modified compiler. A typical report will
consist of five to ten pages of text with embedded code fragments, plus listings
of the compiler changes and additional test cases. A sample report for a different
exercise is provided on the course web page, and shows the suggested structure,
with a narrative account of the compiler changes stage by stage, followed by
difference listings generated with a version control system, and test cases in the
format of the existing tests for Lab 4, showing the compiler input, the expected
output, and the assembly language code. Candidates are not required or permit-
ted to submit the code of their implementation in machine-readable form.

Section 1 of this document sets out the specification for the enhanced for loop
that should be added to the compiler, and Section 2 gives some suggestions for
implementation that you may find useful.

Your attention is drawn to the University’s policy on Plagiarism set out in Ap-
pendix A of each Course Handbook and on the University’s website. The work
submitted for this assignment should be entirely your own and not done in col-
lusion with others. You may make use of written and online sources, but these
should be acknowledged. There is no need to acknowledge help given by demon-
strating staff during the lab sessions.



2 Compilers – Practical assignment

1 Specification

The programming language Algol 60 included only one looping construct, the
for loop, but this could take different forms. A for loop had a ‘controlled variable’
that would be assigned a sequence of values as the loop body was executed. These
values could be listed explicitly, as in

for k := 1, 2, 3, 5 do print(k).

It was also possible to specify an arithmetic progression, as in this example:

for k := 10 step 10 until 100 do print(k).

Here k takes the values 10, 20, 30, . . . , 100 in successive executions of the loop
body. A third form of loop allowed more that just arithmetic progressions. Here
is an example:

k := 1;
for k := 2 ∗ k while k < 1000 do print(k).

This prints 2, 4, 8, . . . , 512, stopping there because the next value, 1024, does
not satisfy the test. These three forms – simple expressions, step-until elements,
and while elements – could be combined, like this:

for k := 1, 2, 3, 5, 10 step 10 until 100, 2 ∗ k while k < 1000 do
print(k).

Perhaps unexpectedly, this program prints 1, 2, 3, 5, 10, 20, 30, . . . , 100, 220,
440, 880. The next value after 100 is 220, because (as the formal definition below
makes explicit), k is set to 110 before the test k ≤ 100 fails, and the while
element begins by computing 2 ∗ k with this value of k.

As a more meaningful example, the following program computes a = b
√
xc

using binary search. A single loop encompasses two phases, one where d is
growing until (a + d)2 > x, and another where d is shrinking again.

a := 0;
for d := 1, 2 ∗ d while square(a + d) ≤ x, d div 2 while d ≥ 1 do

if square(a + d) ≤ x then a := a + d.

The meaning of for loops is defined in the following edited extract from the
Revised Report on Algol 60.1 2

Description of the reference language

4. Statements

4.6. For Statements

4.6.1. Syntax [edited]

〈for list element〉 ::= 〈arithmetic expression〉 |
〈arithmetic expression〉 step 〈arithmetic expression〉
until 〈arithmetic expression〉 |
〈arithmetic expression〉 while 〈Boolean expression〉

〈for list〉 ::= 〈for list element〉 |
〈for list〉, 〈for list element〉

〈for clause〉 ::= for 〈variable〉 := 〈for list〉 do
〈for statement〉 ::= 〈for clause〉 〈statement〉

1 Naur, P. (Ed.), Revised report on the algorithmic language Algol 60, Computer Jour-

nal, 5 (4), January 1963, pp. 349–67. Copies of this report and the paper by Knuth are linked
from the course web page.
2 The extract has been edited to remove references to go to statements and labels and an

unhelpful reference to the function sign.



1 Specification 3

4.6.2 Examples3

for q := 1 step s until n do A[q] := B[q]

for k := 1, k × 2 while k < B do
for j := I + G, L, 1 step 1 until N, C + D do

A[k, j] := B[k, j]

4.6.3 Semantics
A for clause causes the statement S which it precedes to be repeatedly executed zero or
more times. In addition it performs a sequence of assignments to its controlled variable.
The process may be visualized by means of the following picture:

↓ ↑
Initialize; test; statement S; advance; successor

↓ ↑
for list exhausted

In this picture the word initialize means: perform the first assignment of the for clause.
Advance means: perform the next assignment of the for clause. Test determines if the
last assignment has been done. If so, the execution continues with the successor of the
for statement. If not, the statement following the for clause is executed.

4.6.4. The for list elements
The for list gives a rule for obtaining the values which are consecutively assigned to the
controlled variable. This sequence of values is obtained from the for list elements by
taking these one by one in the order in which they are written. The sequence of values
generated by each of the three species of for list elements and corresponding execution
of the statement S are given by the following rules:

4.6.4.1. Arithmetic expression. This element gives rise to one value, namely the value
of the given arithmetic expression as calculated immediately before the corresponding
execution of the statement S.

4.6.4.2. Step-until-element. An element of the form A step B until C, where A, B,
and C are arithmetic expressions, gives rise to an execution which may be described
most concisely in terms of additional Algol statements as follows [edited]:

V := A;

L1 : if B > 0 then begin if V > C then go to Element exhausted end
else begin if V < C then go to Element exhausted end;

statement S;

V := V + B;

go to L1;

where V is the controlled variable of the for clause and Element exhausted points to the
evaluation according to the next element of the for list, or if the step-until-element is
the last of the list, to the next statement in the program.

4.6.4.3. While-element. The execution governed by a for list element of the form
E while F , where E is an arithmetic and F a Boolean expression, is most concisely
described in terms of additional Algol statements as follows:

L3 : V := E;

if ¬F then go to Element exhausted ;

Statement S;

go to L3;

where the notation is the same as in 4.6.4.2 above.

3 The second example incorporates a correction proposed in Knuth, D. E., The remaining

trouble spots in Algol 60, Comm. ACM, 10 (10), October 1967, pp. 611–18.



4 Compilers – Practical assignment

4.6.5. The value of the controlled variable upon exit

[Upon exit from a for statement owing] to the exhaustion of the for list, . . . the value

of the controlled variable is undefined4 after the exit.

The goal of this assignment is to produce a modern implementation of this
looping construct by replacing the existing for loop in the compiler we used in
Lab 4. To fit in with the rest of the language implemented by that compiler, you
should implement Algol 60-style for loops with the following differences:

• In accord with the syntactic style of the rest of the language, a 〈for clause〉
should govern a sequence of statements terminated by end; in Algol 60,
a similar effect would be obtained by enclosing the sequence of statements
in begin . . . end brackets.

• A number of compiler test cases contain for loops with the existing syn-
tax. To allow these to continue to pass, you should allow lo to hi as an
abbreviation for lo step 1 until hi .

• In Algol 60, for loops may have controlled variables with either real or
integer type. Since real variables and arithmetic are not supported by the
compiler in Lab 4, you should allow only integer variables and expressions.

Partial credit will be given for implementations that permit only a single element
in each for list, or implement only some of the three kinds of element, or gen-
erate code that is significantly inefficient or over-long. To gain full marks, your
submission should include test cases that illustrate the completeness of your im-
plementation and the quality of the code it generates. The following mark scheme
will be used, giving a maximum total of 35 marks.

• A basic implementation allowing single step-until and while elements,
with test cases showing the code. 10 marks

• An implementation that allows multiple elements of all three kinds, with
test cases. 10 marks

• Tidy object code of reasonable efficiency, demonstrated by test cases.
5 marks

• Further test cases that demonstrate detailed aspects of loop behaviour.
5 marks

• A written report with good clarity and presentation. 5 marks

2 Implementation hints

(a) To implement the new style of for loop, you will need to consider what
changes are needed in each phase of the compiler. Study carefully the
description of loops given in the extract from the Revised Report, and note
that the step and upper bound of a step-until element are re-evaluated
before each iteration of the loop. The equivalent code given for step-until
elements suggests that the step is evaluated twice in each iteration. Your
implementation should be faithful to this interpretation, and you should
include a test case that verifies that the step is indeed evaluated twice
where doing so makes a difference.5

4 “Whenever . . . the outcome of a certain process is left undefined or said to be undefined,
this is to be interpreted in the sense that a program only fully defines a computational process

if the accompanying information specifies . . . the course of action to be taken in all such cases

as may occur during the execution of the computation.” (Naur, op. cit., footnote on p. 352.)
5 We are therefore taking the ‘conservative’ interpretation of the semantics, as described by

Knuth (op. cit.).



2 Implementation hints 5

(b) To ensure compact code, you should design a code generation scheme such
that code for the loop body is generated only once. This means setting
things up so that, when the body finishes, control returns to the correct
element of the for list. It is convenient to do this by introducing a hidden
variable associated with the loop that contains 0 when the first element
of the for list is active, 1 when the second element is active, and so on.
Following the loop body, the code can use the value of this variable to
branch back to the code for the appropriate list element.

(c) The existing implementation of for statements uses a hidden variable to
hold the upper bound for the iteration, making sure this upper bound is
fixed when the loop begins, and avoiding re-evaluation of the upper bound
expression on each iteration of the loop. Space for this variable is allocated
in the stack frame of the enclosing procedure during semantic analysis,
and it is used in generating code for the loop. You will observe that the
upper bound is not fixed in Algol 60, but is re-evaluated on each iteration.
Nevertheless, the existing code to support a hidden variable will be useful
to you, because your implementation will need a variable to keep track of
which element of the for list is currently active.

(d) The code for each element of the for list has two entry points: one at the top
that is entered when the for statement starts, or when the previous element
is finished, and another (with a label) where control returns after executing
the loop body. For a step-until element, one of these entry points sets the
controlled variable to its initial value, and the other increments it, before in
each case evaluating the termination test. When each element is exhausted,
execution falls through to the next element.

(e) For the multi-way branch that follows the loop body, you can exploit an
operation Jcase that generates jump tables. As an example, the statement
optree

〈Jcase ([lab0; lab1; lab2], lab3), t〉

examines the value of t, branching to lab0, lab1 or lab2 respectively if the
value of t is 0, 1 or 2, and branching to lab3 if the value of t is either less
than 0 or greater than 2. This operation is used in the existing compiler
to implement a simple form of case statement where the case labels are
assumed to lie in a fairly compact range.

(f) Most for loops will have only a single element in the for list, and you should
ensure that your implementation generates code for them that is, as nearly
as possible, equal in efficiency to the code generated for equivalent loops by
the existing compiler.

(g) Where the step size is fixed and known at compile time, code that is directly
based on the outline given in the Revised Report will contain one or more
conditional branches that can be seen as always taken or never taken. Better
code will result if these are optimised away before the intermediate form is
translated into machine code.

(h) In writing the report, you can use Mercurial or Git to track what changes
you have made to the compiler, making sure you include and explain all the
code you have added. You should also include test cases to demonstrate
that your implementation works properly, and to display the generated
code, showing that it is compact and efficient. Think of possible bugs in
your colleagues’ implementations, and include test cases to show that your
compiler does not suffer from them.


