
University of Oxford
Department of Computer Science

Compilers
Michaelmas Term 2020

Your report on this assignment should be submitted online via WebLearn by 12
noon on 29th January 2021. The assignment is worth 35 marks out of a total
of 100 marks for the course.

This assignment is based on the compiler from a Pascal subset to code for the ARM
that was the subject of Lab 4 in the course. It asks you to make two extensions, which are
specified later in this document.

To carry out the assignment, you will need access to a Unix environment containing
version control tools, an OCaml compiler, software tools that enable cross-compiling for
the ARM, an ARM emulator, and other support software. Hints and resources for setting
up such an environment are provided on the course web page. Lab machines are available
for remote access.

A fresh copy of the practical materials for the course may be obtained as described on
the course website, e.g. by cloning the Git repository supplied for the lab exercises to a
directory named task:

$ git clone http://spivey.oriel.ox.ac.uk/git/compilers task

Candidates are required to submit a written report, describing the changes they made
to the compiler in order to support the extensions, and the provisions they have made for
testing the modified compiler.

A typical report will consist of five to ten pages of text with embedded code fragments,
plus listings of the compiler changes and additional test cases. A sample report for a differ-
ent exercise is provided on the course web page, and shows the suggested structure, with
a narrative account of the compiler changes stage by stage, followed by difference listings
generated with a version control system, and test cases in the format of the existing tests
for Lab 4, showing the compiler input, the expected output, and the assembly language
code. Candidates are not required or permitted to submit the code of their implementation
in machine-readable form.

Your attention is drawn to the University’s policy on Plagiarism set out in
Appendix A of each Course Handbook and on the University’s website. The
work submitted for this assignment should be entirely your own and not done
in collusion with others. You may make use of written and online sources, but
these should be acknowledged.

The remainder of the document sets out the two tasks that constitute the assignment.

1



Task 1: Breaking out of nested loops

The first task concerns the implementation of a break n statement, which modifies the
behaviour of loops. Note that the language of Lab 4 features three loop statements (for,
repeat and while). Each of them counts as a loop for the purpose of the assignment.

• break accepts an argument n, which tells it how many enclosing loops should be
broken out of.

• The argument must be a positive integer constant and the compiler should report an
error if this condition is violated. The argument is optional, on the understanding
that break stands for break 1.

• Each occurrence of break n should be surrounded by at least n loops. If this is not
the case, the compiler should report an error.

• On reaching break n, program control should be transferred immediately to the
program point following the end of the nth enclosing loop.

The goal of the task is to add break n to the language as a new kind of statement and
extend the compiler so that it conforms to the specification given above.

Example

var a: array 10 of array 10 of integer;

var i, j: integer;

begin

for i:=0 to 10 do for j:=0 to 10 do a[i][j]:=i*j end end;

i:=0;

while i<10 do

j:=0;

repeat

if a[i][j]=63 then break 2 else j:=j+1 end

until j=10;

i:=i+1

end;

(* i=7 and j=9 *)

print_num(i); newline(); print_num(j); newline()

end.

Replacing break 2 with break (or, equivalently, with break 1) should change the final
values of i and j to 10 and 7 respectively.

2



Task 2: Memory alignment

The Lab 4 compiler generates code that adheres to a set of memory alignment policies,
such as the requirement that integer values be stored at addresses divisible by four. Due
to padding, this often results in allocation of memory that will never be used.

In this task, you are asked to design and implement measures that will attempt to
reduce the amount of padding and, thus, improve the memory footprint of programs while
still observing all alignment constraints.

Your optimisations need not result in optimal or padding-free memory allocation in
all cases, but rather handle a range of interesting cases in which optimisation is possible.
For example, the current compiler will use four words of memory to accommodate records
of type record f1:boolean; f2:integer; f3:boolean; f4:integer end. However, if
the fields were stored in a different order, three words would suffice to hold the content
without violating the alignment rule for integers.

Please make sure to explain in the report what scenarios are and are not covered by
your method. You may wish to start off by reviewing the compiler code and identifying
all places affected by alignment conventions.

Assessment

Partial marks will be given for implementing only some aspects of the assignment, or
generating code that is significantly inefficient or over-long. To gain full marks, your
submission should include test cases that illustrate the quality of your implementation and
the generated code. The following mark scheme will be used, giving a maximum total of
35 marks.

• A basic implementation of Task 1 with simple test cases showing the code.

(10 marks)

• A basic implementation of Task 2 with simple test cases showing the code.

(10 marks)

• Tidy object code of reasonable efficiency, demonstrated by test cases.

(5 marks)

• Further test cases that demonstrate subtle aspects of the solution.

(5 marks)

• A written report with good clarity and presentation.

(5 marks)

3


