
Compilers: Lab zero

Mike Spivey, September 2017

This introductory lab is entirely optional and requires very little program-
ming, but allows you to study a simple OCaml program that incorporates a
lexer and parser written with the standard tools. The materials for this lab
have been incorporated in the Mercurial and Git repositories together with
those for Labs 1–4.

The main aim in this lab is for you to become familiar with Objective Caml,
the dialect of ML we shall be using throughout the course. You’re provided
with a little calculator program that lets you enter mathematical formulas and
display the results (see Figure 1). Each line of input (shown here in italic type)
is either an equation like “x = 3 + 4” or “y = x + 3”, or a simple expression like
“4∗ 5” (which the program treats as if it were an equation “it = 4∗ 5” with the
variable “it” on the left-hand side). At present, the program will evaluate any
expression that doesn’t contain variables and display the answer, but it does
not store the value for use in subsequent expressions. Your task is to add
this feature, turning the calculator into one with an effectively unbounded
set of named memories.

1 Getting started

As described in the coursebook, your first act should be to clone the Mercurial
repository that contains the lab materials.

$ hg clone http://spivey.oriel.ox.ac.uk/hg/compilers

This creates a directory called compilers that contains the materials. Next,
you should build some library modules that are used by all the labs.

$ (cd compilers/lib; make)

The files you need for this lab are in the directory lab0. The calculator pro-
gram consists of six modules:

Files Description

tree.mli Defines the type expr of expression trees.

lexer.mll A lexical analyser (written with ocamllex).

parser.mly An expression parser (written with ocamlyacc).

Copyright © 1999–2017 J. M. Spivey 1

2 Compilers: Lab zero

$ calc
Welcome to the world of arithmetic
? x = 3 + 4
=> 7.0
? 4 * 5
=> 20.0
? y = x - 1.5
Failure: sorry, I don’t do variables
? ˆD
Bye
$

Figure 1: Using the calculator

memory.mli, memory.ml Memory for values of variables.

eval.mli, eval.ml Functions for evaluating expressions

main.ml The main program.

Your task will involve modifying the Eval module, and adding an implemen-
tation of the module Memory that holds the contents of the calculator’s mem-
ory.

The practical kit includes a makefile that describes how to build the com-
plete calculator program: just change to the directory compilers/lab0 and
give the command make:

$ cd compilers/lab0
$ make

The following steps will be executed automatically:

ocamllex lexer.mll
16 states, 429 transitions, table size 1812 bytes
ocamlyacc parser.mly
ocamlc -c tree.mli
ocamlc -c parser.mli
ocamlc -c lexer.mli
ocamlc -c lexer.ml
ocamlc -c parser.ml
ocamlc -c eval.mli
ocamlc -c eval.ml
ocamlc -c main.ml
ocamlc ../lib/common.cma

lexer.cmo parser.cmo eval.cmo main.cmo -o calc

Two of these commands invoke the tools ocamllex and ocamlyacc to generate
ML code the for lexer and parser; the rest use the Objective Caml compiler
on various files with names like module.mli and module.ml that contain the
interface and the implementation of each module in the program. From the
interface file of a module, the compiler produces a file module.cmi that con-
tains the interface in binary form; when the compiler subsequently processes
the corresponding implementation file, or another module that uses this one,

2 A guided tour 3

it consults this file to check that the definition or use of functions agrees with
the declared interface.

Compiling an implementation file produces a file called module.cmo that
contains object code for the module: this file is linked together with others to
build the final program. The Objective Caml compiler as we shall use it does
not produce object code for a real machine, but for an invented machine,
rather like the virtual machines we shall be using in the course. That’s why
the files of object code have the extension .cmo, rather than the extension .o
that is used for files of genuine object code.

As the example shows, it’s possible for a module to have no interface
file: there is no file main.mli to go with the file main.ml. The convention
is that this means all the functions defined in those modules are accessible
to others; although actually the module main is used here for its side-effect
alone: it contains the main program. Compiling a ‘.ml’ file that doesn’t have a
corresponding ‘.mli’ file produces both a ‘.cmi’ file that contains the interface
and a ‘.cmo’ file that contains the object code. It’s also possible to have a
module with an interface but no implementation: the file tree.mli just defines
the type of expression trees, and leaves nothing to be implemented.

The final command puts together all the files of object code, and the library
archive ../lib/common.cma, to produce an executable program calc that you
can run just like any other. When you type calc at the shell prompt,1 what
actually happens behind the scenes is that an interpreter for the virtual ma-
chine code is started, and it is given the code that the compiler generated for
your program. This layer of interpretation means that Objective Caml pro-
grams go about 5 times slower than they would if they were really translated
into proper machine code, but I promise you won’t notice the difference, at
least with the small test cases we’ll use in our lab sessions.2

2 A guided tour

The lexer and parser for expressions are built using the program generators
ocamllex and ocamlyacc that we shall shortly be looking at more closely; for
now, you can just take for granted the job that they do. The main program
contains a loop that reads lines from the keyboard, and uses the lexer and
parser to build for each expression a tree of the type expr that is defined in
the file tree.mli:

type expr =
Number of float (∗ Constant (value) ∗)

| Variable of string (∗ Variable (name) ∗)
| Binop of op ∗ expr ∗ expr (∗ Binary operator ∗)

and op = Plus | Minus | Times | Divide

The type float is Objective Caml’s representation of real numbers: I’ve used

1 Don’t forget to type ./calc instead if your account is set up so that the path does not contain
the current directory
2 For critical, production applications, there is a compiler that can translate Objective Caml
into real machine code for a number of different machines. Since this compiler is itself much
slower than the one that generates virtual machine code – and since we’ll spend much more
time building our compilers than running them – it makes no sense for us to use it.

4 Compilers: Lab zero

open Tree

(∗ do binop – compute result of binary operator ∗)
let do binop w v1 v2 =

match w with
Plus → v1 +. v2

| Minus → v1 −. v2

| Times → v1 ∗. v2

| Divide →
if v2 = 0.0 then failwith "dividing by zero";
v1 /. v2

(∗ eval expr – evaluate an expression ∗)
let rec eval expr =

function
Number r → r

| Variable x → failwith "Sorry, I don’t do variables"
| Binop (w, e1, e2) →

do binop w (eval expr e1) (eval expr e2)

(∗ process – process an equation, return value of RHS ∗)
let process (x, e) = eval expr e

Figure 2: The file eval.ml

them in place of integers because doing so makes the calculator program
actually useful. We won’t always be bothered by such considerations later in
the course!

As an example, if the input were the string 3+4∗(5+6), then the following
tree of type expr would be created:

Binop (Plus,
Number 3.0,
Binop (Times,

Number 4.0,
Binop (Plus,Number 5.0,Number 6.0)))

Each line from the input can actually consist of an equation with a variable on
the left and an expression on the right. The main program calls the function
process from the Eval module, passing as arguments the identifier (or “it”
if none was given) and the tree for the expression. The type of process is
specified in eval.mli; here is the whole of that file:

(∗ process – process an equation, return value of RHS ∗)
val process : string ∗ Tree.expr → float

The file eval.ml is shown in Figure 2. The function do binop of type

do binop : op → float → float → float

combines two floating-point numbers using a binary operation; the opera-
tors written as +., −., etc., are Objective Caml’s way of doing floating-point
arithmetic. The function eval expr with type

eval expr : expr → float

3 A memory module 5

evaluates an expression by using do binop to perform each operation, and
calls itself recursively to evaluate sub-expressions. This initial version does
not handle variables.

What process (x, e) should do is to evaluate the right-hand side e of the
equation x = e that has been input, and store the value against the identifier
x on the left-hand side, also returning the value so that the main program
can print it. However, the initial version of process simply evaluates e and
returns the value without storing it anywhere.

3 A memory module

Your first job will be to build a module for the calculator’s memory. An
interface file memory.mli already exists:

(∗ store – set a memory (named by a string) to a given value ∗)
val store : string → float → unit

(∗ recall – retrieve the value from a given memory, or fail ∗)
val recall : string → float

You should write the implementation file memory.ml for this module. You
can use any method you choose. The simplest method is to use a list of
(variable, value) pairs and the standard function assoc from the List module;
another method is to use a list of records. You also might like to investigate
the Hashtbl and Map modules from the library; the first provides a generic
implementation of hash tables that you could use, and the second provides
a generic implementation of finite mappings as ordered trees. Any of these
methods gives an implementation of Memory in only a few lines. The func-
tionality is really too simple to be worth putting in a module, except as an
illustration of the module mechanism.

Having written this implementation, you should add the Memory module
to the calculator by replacing the line in Makefile that says

CALC = lexer.cmo parser.cmo eval.cmo main.cmo

with the following line:

CALC = lexer.cmo parser.cmo memory.cmo eval.cmo main.cmo

It’s important to list the modules in the order shown, so that each module is
loaded before the ones that use it.

4 Extending the evaluator

There are a couple of places where you’ll need to make small extensions to
the evaluator in eval.ml. First, you should add a line near the beginning that
opens the Memory module:

open Memory

This line makes it possible to refer to the store and recall functions directly:
it’s not absolutely necessary, because you could achieve the same effect by
writing Memory .store and Memory .recall in place of store and recall .

6 Compilers: Lab zero

$ calc
Welcome to the world of arithmetic
? x = 3 + 4
=> 7.0
? 4 * 5
=> 20.0
? y = x - 1.5
=> 5.5
? ˆD
Bye
$

Figure 3: The extended calculator

Next, remove the call to failwith from eval expr , and replace it with some-
thing appropriate. Finally, change process so that it saves the value of the
expression before returning it.

With these changes, you should be able to rebuild the calculator and get
the results shown in Figure 3.

