
Mike Spivey
Michaelmas Term 2023

Copyright © 2023 J. M. Spivey

Department of
COMPUTER
SCIENCE

Implementing OOP

Department of
COMPUTER SCIENCE

Michael Spivey

Object-oriented programming

• Encapsulation: the implementation of a class
should be hidden from its users.

• Object identity: each instance of a class should
have a distinct identity, so that multiple
instances can co-exist.

• Polymorphism: if several classes have the
same interface, instances of them can be used
interchangeably.

Inheritance is not so important.

2

Department of
COMPUTER SCIENCE

Michael Spivey

About Oberon

Niklaus Wirth’s language Oberon (and its successor
Oberon–2) are interesting because OOP ideas
emerge from a combination of other language
features.

• We’ll use Oberon syntax in this lecture, but the
mechanisms apply to other OO languages too.

3

Department of
COMPUTER SCIENCE

Michael Spivey

Object identity

Each object can be stored as a heap-allocated
record, and we can use the address of the record
as its identity.

type Car = pointer to CarRec;
	 CarRec =
	 	 record reg, miles: integer end;

var c: Car;

new(c)

In many languages, the pointers are implicit.

4

Department of
COMPUTER SCIENCE

Michael Spivey

Instance variables

Each object has fields for its instance variables,
and also knows what class it belongs to: a pointer
to a class descriptor, shared among all instances.

5

miles

reg

Car

+4

+8

an object

c

Department of
COMPUTER SCIENCE

Michael Spivey

Access to instance variables

Methods can refer to instance variables of the
object.

proc (self: Car) drive(dist: integer);
begin
	 self.miles := self.miles + dist
end;

Many languages make the name self or this
implicit, and allow the assignment to be written
miles := miles + dist.

6

Department of
COMPUTER SCIENCE

Michael Spivey

self.miles := self.miles + dist

LDLW 12 ! self
LDNW 8 ! .miles
LDLW 16 ! dist
PLUS ! +
LDLW 12 ! self
STNW 8 ! .miles :=

7

miles

reg

Car

+4

+8
dist

self

Frame
head

+12

+16

fp:

Department of
COMPUTER SCIENCE

Michael Spivey

Virtual method tables

Each class has a vtable showing methods it
supports, with a pointer to code for each of them.

Each method has a known offset in the vtable.

8

miles

reg

Car

+4

+8

2: commute

an object
a class descriptor

code for
Car.drive

0101…

+12

c

1: drive

0: getmiles

. . .

+16

+20

Department of
COMPUTER SCIENCE

Michael Spivey

Method invocation

c.drive(100) is implemented like

c.class.vtable[1](c,100):

CONST 100	 ! 100
LDGW _c	 ! c
DUP	 ! duplicate
LOADW	 ! .class
LDNW 16	 ! .vtable[1]
CALL 2	 ! (c,100)

(If methods are not nested, there is no need for
static links.)

9

Department of
COMPUTER SCIENCE

Michael Spivey

A subtlety

If a car collector should write

garage[i++].drive(5)

we must avoid evaluating garage[i++] twice.

Hence the DUP: or if compiling for a register
machine, we could put the object pointer in a temp.

10

Department of
COMPUTER SCIENCE

Michael Spivey

Using a temp

c.drive(100)

⟨AFTER,
 ⟨DEFTEMP 1, ⟨LOADW, ⟨GLOBAL _c⟩⟩⟩,
 ⟨CALL 2,
 ⟨LOADW,
 ⟨OFFSET, ⟨LOADW, ⟨TEMP 1⟩⟩, ⟨CONST 16⟩⟩⟩,
 ⟨ARG 0, ⟨TEMP 1⟩⟩,
 ⟨ARG 1, ⟨CONST 100⟩⟩⟩⟩

11

Department of
COMPUTER SCIENCE

Michael Spivey

As machine code

⟨DEFTEMP 1, ⟨LOADW, ⟨GLOBAL _v⟩⟩⟩
ldr r0, =_c

	 ldr r4, [r0]

⟨ARG 1, ⟨CONST 100⟩⟩
mov r1, #100

⟨ARG 0, ⟨TEMP 1⟩⟩
mov r0, r4

⟨CALL 2, ⟨LOADW,
 ⟨OFFSET, ⟨LOADW, ⟨TEMP 1⟩⟩, ⟨CONST 16⟩⟩⟩⟩

ldr r3, [r4]
	 ldr r3, [r3, #16]
	 blx r3

12

Department of
COMPUTER SCIENCE

Michael Spivey

Encapsulation

For languages compiled to machine code,
encapsulation can be enforced as part of semantic
analysis.

A class has a small table of instance variables and
methods, each marked as public or private, so the
rules can be checked at each use.

But generally there is no protection mechanism at
the machine level.

13

Department of
COMPUTER SCIENCE

Michael Spivey

Subclasses
type Tesla = pointer to TeslaRec;
	 TeslaRec =
	 	 record (CarRec) charge: integer end;

proc (self: Tesla) drive(dist: int); …

proc (self: Tesla) recharge();
	 begin self.charge := 100 end;

• Instance variables inherited and more added.

• Some methods inherited, some overridden,
and some added

14

Department of
COMPUTER SCIENCE

Michael Spivey

Implementing subclasses

Instances of a subclass add new instance
variables at the end, and new methods go at the
end of the vtable.

15

charge

miles

reg

Tesla

+4

+8

+12
3: recharge

2: commute

a Tesla

Tesla class

code for
Tesla.drive

overridden
inherited

added

+12

0101…

1: drive

0: getmiles

+16

+20

+24

inherited

Department of
COMPUTER SCIENCE

Michael Spivey

Dynamic dispatch

All vehicles use a consistent vtable index 1 for the
drive method.

var c: Car; t: Tesla;

new(t);

c := t

The call c.drive(10) will correctly invoke the
Tesla version of drive.

And c.getmiles() will use the Car version of
getmiles.

16

Department of
COMPUTER SCIENCE

Michael Spivey

Access to instance variables

However it is invoked, the getmiles() method in
Car correctly returns the value of miles, even if the
receiver is actually an instance of Tesla.

proc (self: Car) getmiles();
	 begin return self.miles end;

This works because the Car part of a Tesla’s
instance variables is laid out in the same way as an
ordinary Car.

17

Department of
COMPUTER SCIENCE

Michael Spivey

Late method binding

If Car.commute() is defined as

proc (self: Car) commute();
begin
	 for i := 1 to 10 do
	 	 self.drive(50)
	 end
end

then invoking commute with a Tesla as receiver will
use the Tesla version of the drive method: this is
late method binding.

18

Department of
COMPUTER SCIENCE

Michael Spivey

Fragile base class problem

The net effect of commute() invoked on a Car
object is to increase miles by 500.

So what if we, or a compiler, ‘optimised’ it to

self.miles := self.miles + 500?

What does that do when commute() is invoked on a
Tesla object?

Conclusion: inheritance breaks encapsulation.

19

Department of
COMPUTER SCIENCE

Michael Spivey

Super calls

Writing Tesla.drive as

proc (self: Tesla) drive(dist: integer);
begin
	 self.drive↑(dist);
	 self.charge := self.charge - 5*dist
end;

uses a super call, implemented as a static call to
Car.drive.

• Still pass self as a parameter, so calls in the
superclass method can use dynamic dispatch.

20

Department of
COMPUTER SCIENCE

Michael Spivey

Fragile binary interface problem

Changes to Car, even if they don’t affect its public
interface (e.g., adding a new private method) will
require all subclasses like Tesla to be recompiled,
because the vtable layout can change.

This is unacceptable for languages like Java where
code is collected from all over the web. That’s why
the JVM delays laying out vtables until the classes
are loaded.

21

Department of
COMPUTER SCIENCE

Michael Spivey

Type tests and casts

v is Car: true if v is a Car or Tesla, false if any
other kind of Vehicle.

Implementation: each class knows its level and its
list of ancestors.

Vehicle 0 Vehicle
Car 1 Vehicle, Car
Tesla 2 Vehicle, Car, Tesla

Use (level >= 1 & ancestor[1] = Car) without
any need to search the ancestor chain.

22

Department of
COMPUTER SCIENCE

Michael Spivey

In conclusion

With single inheritance: method dispatch, type
tests and access to instance variables can all be
compiled with fixed cost. But …

• dynamic dispatch has a hidden cost in
mispredicted branches.

• multiple inheritance, as in C++, makes the
picture (much) more complicated.

Scala’s traits are implemented by flattening the
program at compile time, then using single
inheritance.

23

