Adequacy of propositional
connectives

Mike Spivey,
Trinity Term 2019

In the lectures, I claimed that every Boolean function of n arguments can be
computed by a logic circuit containing AND and OR gates and inverters. We
will take this as equivalent to the theorem that for every Boolean function,
there is a formula containing the operations A, v and — that expresses the
function. Indeed, given any Boolean formula, we can construct an equivalent
logic circuit, so any function expressible as a formula is also computable by a
circuit. To prove the theorem itself, we will have to pin down precisely what
we mean by the terms used in it: what does mean for a formula to express a
Boolean function? So we must begin with some definitions.

Definition. By a Boolean function, we mean a mathematical function
f:B" - B,

where B = {0, 1}. We use the term assignment for members of the set B" of
n-tuples of Booleans.]

We can define a particular Boolean function by writing out its truth table:
each line lists an assignment of Boolean values to the arguments of the func-
tion, and the value of the function on that assignment.

Definition. By the set F of formulas, we mean the smallest set that contains
the constant 0 and the propositional letters x; for 1 < i < n, and is closed
under the following operations:

o If ¢ € F then ~¢p € F.
e Ifp,yp e Fthenp A Y € F.
e Ifp,yp e Fthenp vy € F.

We take the operations as forming a kind of tree, so that there is not the
ambiguity that would arise if formulas were thought of as strings of symbols.
We will use parentheses in writing formulas in order to make it clear which
tree is meant.]

Definition. Given an assignment a and a formula ¢, we can determine the
value [¢p], of ¢ under a. This is defined recursively as follows:

e [0]; =0.

o [xila = ai.

Copyright © 2018-23 J. M. Spivey 1

2 Adequacy of propositional connectives

e [~¢pla=1-[¢la
o [P Awla=min((Pla, [Wa)
o [¢ Vv la=max([pla, [yla). L]

(In this definition, we have used functions min, max and 1 — e to capture the
effect of the connectives as operations on truth values {0, 1} - but the gist of
this definition is that the logical symbols express the operations we expect.)

The definitions made so far allow us to state precisely the result we want
to prove.

Theorem. For each Boolean function f, there exists a formula ¢ that
expresses f, in the sense that [¢], = f(a) for every assignment a. [

We can observe at this point that the operations expressed by A and Vv are
associative and commutative and idempotent, so that (for example)

[(pAw)AOla=1d A (A0

for any formulas ¢, g, 0 and all assignments a. We will exploit this fact in
what follows by talking about the conjunction or disjunction of a set of for-
mulas, without troubling to pick out which of the many equivalent possible
results we mean. Alternatively, if the elements of the set of formulas have
a natural order, we can simply join them together in that order with all the
brackets as far as possible to the right, thus picking one result unambigu-
ously.

Specifically, if ¢; is a formula for each element i of a non-empty finite
set S, we can form the conjunction /\;cs ¢; and the disjunction V;cs ¢;. For
any assignment a, if [¢;], = 1 for all i € S, then [A;cs ¢i], = 1 also, and if
[¢jla =0 for any j € S, it follows that [A;cs ¢i], = 0. Similarly, to show
[Vies ¢il, = 1, it suffices to show that [¢;]s = 1 for some j, and we can
show [Vies ¢il, = 0 by showing that [¢;], = 0 for all i.

Proof of theorem. Our goal is, given a Boolean function f, to construct
a formula ¢ such that [¢],; = f(a) for every assignment a. We do this by
considering the truth table of f, which is to say, the values f(a) for each
assignment a.

First, if x is a propositional letter and t € B, let 6(x, t) be the formula “x”
if t = 1, and the formula “—x"” if t = 0. It immediately follows that if a is any
assignment, then [6(x;, a;)], = 1. For if a; = 1 then 6(x;, a;) = x;, SO

[6(xi, anla = [xila=ai = 1;
and if a; = 0 then 6(x;, a;) = —X;, SO
[6(xi,apla =[Xxila=1—-a;=1.

Also, if b is any assignment different from a, then for some j we have
[6(xj, aj)lp = 0: just pick j such that a; # bj.
Next, for each a, let A(a) be the formula
Aa)= N 8, ap).
1<i<n

We find first that [A(a)], = 1, and second that if b # a then [A(a)]p = 0. The
first claim follows from the fact that [6(x;, a;)]s = 1 for all i, and the second
claim follows because we can pick j such that [d(x;, a;)]p = 0.

Adequacy of propositional connectives 3

Finally, define ¢ by saying that if f(a) = O for all a, then ¢ = 0; and other-
wise, define

b=\ AW,
a:fla=1
using a disjunction over the (finite) set of assignments a such that f(a) = 1.
In the first case, the result follows trivially. In the second case, we claim that
for any b, it holds that [¢], = f(b). For if f(b) = 1, then A(b) appears as a
disjunct on the right-hand side, and we have [A(b)], = 1 and so [¢]p = 1.
And if f(b) = 0 then all the disjuncts A(a) have a # b, and so [A(a)]p = 0; it
follows that [¢], = 0 also. In both cases, f and ¢ agree as desired.]

By way of contrast, it is claimed on a problem sheet that the operations @
(exclusive OR) and — do not form an adequate set. To show this formally, we
need consider only the case n = 2, and let G be the set of formulas containing
x1 and x; and closed under the formation of formulas —¢ and ¢ & . Now
the relevant definition of the value of a formula has

o [~¢la=1-I[¢]a
e [poyla=([¢la+[ylsd mod?2.
Now let S be a set of eight Boolean functions defined by
S = {0000, 0011,0101,0110,1111, 1100, 1010, 1001},

where uvxy denotes the function f such that f(0,0) = u, f(0,1) = v, f(1,0) =
x, and f(1, 1) = y - so that the truth table for f reads u, v, x, y from top
to bottom. The set S contains only half of the 16 Boolean functions of two
variables, and in particular it does not contain the AND function 0001. We
claim, however, that for any formula ¢ € G, if a function f is defined by
f(a) = [¢la, then f € S, and so there are some functions, including the AND
function, that are not expressed by any formula ¢ € G.
To prove this, we use structural induction on ¢.

o If ¢ is a propositional letter, then it expresses one of the functions
x1 = 0011 or x2 = 0101, both members of S.

o If ¢p expresses a function in S, then so does —¢, because for each func-
tion f € §, the function g defined by g(a, b) = 1 — f(a, b) is also in S:
in fact, this operation maps each function to the one that appears four
places to its right or left in the list given above.

o If ¢ and y both express functions in S, then so does ¢ ® . Show-
ing this is more tedious, but amounts to the fact that any two of the
functions listed above, if combined by element-wise addition modulo 2,
gives another of the functions listed.

It follows by induction that if f(a) = [¢],; for some formula ¢ € G, then
f € S, and the set of connectives {®, =} is not adequate. [

For general n, we can characterise and count the functions expressible with
these connectives by finding a normal form. Among the algebraic properties
of the connectives are that & is associative and commutative and has 0 as an
identity element. Each function is self-inverse: ¢ @ ¢ = 0; and — distributes
over & in that (~¢p) @ Y = ¢ & (—y) = =(¢p &). The consequence is that
any expressible function can be put in a form such as —(x; & x4 @ Xxg), the

4 Adequacy of propositional connectives

@-sum of distinct variables, possibly with a negation sign at the front. We
might capture the normal form symbolically as
* Z aiXj,

l<i<n
where + denotes a possible negation, >. combines multiple terms with &,
and the coefficients a; are each 0 or 1. There are 2"*! such expressions, but
22" Boolean functions in total, so necessarily some Boolean functions are not
expressible.

Another property of the expressible functions is that they all take value 1 for
an even number of assignments. This too can be proved by structural induc-
tion. The propositional letters are each true in precisely 2”1 assignments.
If ¢ is true in 2a assignments, then —¢ is true in 2" — 2a assignments, an
even number. If ¢ and are true in 2a and 2b assignments respectively,
and there are c assignments where both are true, then ¢ @ is true in those
assignment where one or other but not both of ¢ and ¢ are true; the num-
ber of such assignments is (2a — ¢) + (2b — ¢) = 2a + 2b — 2¢, also an even
number.

Boolean functions that are true in an even number of assignments can be
put in one-to-one correspondence with those that are true in an odd number
of assignments by negating the value for a single chosen assignment, such
as the one where all letters are false. So exactly half of all Boolean functions
are even, and there are 22"~! such functions. In summary, there are 2"*!
functions expressible with {®, =}, there are 22"~1 functions true in an even
number of assignemts, and there are 22" Boolean functions altogether, and
2l < 22"-1 < 22" whenever n > 3.

