
Digital Systems:
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Mike Spivey, Hilary and Trinity Terms, 2020

1 Machine-level programming

Questions on this sheet probe details of ARM Cortex-M0 assembly language,
and also of its encoding as binary machine code. It can’t be emphasised
enough that, though a lot of this detail is needed for the experience of under-
standing how a particular computer works (which every Computer Science
student should enjoy at some stage), it isn’t detail that is worth memorising in
the medium term. Id est, it won’t be on the exam.

1.1 Find as many single Thumb instructions as you can that have the effect
of setting register r0 to zero, and as many as you can that copy register r1
to register r0. In each case, the instruction may or may not set the condition
codes: say which.

To answer this exercise, use the ARM Architecture Reference Manual (linked
from the micro:bit page on the wiki) to look up the details of some of the
instructions shown in red, orange, yellow or green in tables [A] and [B] of the
Rainbow Chart.

1.2 The following listing shows a disassembly of the simple multiplication
routine from the lecture.

func:
c0: 2200 movs r2, #0

loop:
c2: 2900 cmp r1, #0
c4: d002 beq cc <done>
c6: 3901 subs r1, #1
c8: 1812 adds r2, r2, r0
ca: e7fa b c2 <loop>

done:
cc: 0010 movs r0, r2
ce: 4770 bx lr

(I’ve edited it a bit to remove distracting details.) Decode some of the in-
structions by hand, and in particular explain the displacements that appear
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in the beq and b instructions.
Again look up the instructions in the ARM Architecture Reference Manual,

and use the information about encodings given there to decypher some of the
hexadecimal numbers shown in the listing.

1.3 As it stands, the multiplication routine shown in Exercise 1.2 has a
loop that contains 5 instructions, and takes 7 cycles for each iteration but
the last: three cycles for the branch back to the start, and one cycle for each
of the other instructions, including the untaken conditional branch. Try to
rewrite the loop so that it contains fewer instructions. A good solution has
3 instructions in the loop, taking 5 cycles per iteration, but it is possible to go
further using ‘loop unrolling’ and make a still faster routine.

1.4 Note that conditional branch instructions in Thumb code, such as beq,
have a displacement field of limited size, but the unconditional branch b
has a bigger displacement field. Show how a two-instruction sequence can
be used to simulate conditional branches with a bigger range than can be
achieved with a single beq. What is the penalty in execution time for doing
this? The branch-and-link instruction bl has a still larger displacement field.
Can it be used in a similar way to simulate even longer conditional branches?

1.5 Show with examples why different instructions blt and blo are needed
following comparison of signed and unsigned numbers. Find out the condi-
tions under which each of these branches is taken, and explain why the result
is correct in each case.

1.6 Write (in some high-level language – C, Scala, or Python if you must)
a routine for unsigned integer division, using the näıve algorithm based on
repeated subtraction. Code the result in assembly language.

To answer this problem well, you must: formulate precisely the problem to
be solved; give a clear algorithm for the problem and justify its correctness;
code the algorithm in commented assembly language in an efficient way, con-
sidering the possibility of overflow; comment on errors that should be detected.

1.7 Repeat the previous exercise using a better algorithm. Fancier versions
of the ARM have an instruction clz r1, r2 that sets r1 to the number of
leading zeroes in the binary number in r2; what use is this instruction in
writing a division routine?

2 Programming with memory

This sheet again probes details of the encoding of ARM instructions as bi-
nary machine code. The details are interesting because they reflect which
instructions are most useful in programming. Undergraduates have no need
to memorise everything, and in fact suitable compact reference material will
be provided in the exam.
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2.1 Thumb provides encodings for the following instructions, with n a
small constant. In each case, suggest a use for the instruction in imple-
menting the constructs of a high-level language.

ldr r1, [pc, #n] add r1, pc, #n

ldr r1, [r2, r3] add r1, sp, #n

ldr r1, [r2, #n] add sp, sp, #n

ldr r1, [sp, #n]

In native code, these instructions have a uniform encoding that allows any
register to be used for any purpose. In Thumb code, only some forms of the
instructions have been given an encoding, and the designers have deliberately
chosen to spend encoding space on instructions that are useful for some pur-
pose: but what?

2.2 There are two instructions, ldrh and ldrsh, that load a 16-bit quantity
from memory and put it in a 32-bit register, but only one instruction strh
that stores into a 16-bit memory location. What is the difference between the
two load instructions, and why is only one store instruction needed? Thumb
provides no encoding for the form ldrsh r1, [r2, #n]; what equivalent
sequence of instructions can be used instead?

2.3 We have used the instruction ldr r1, [sp, #n], where n is a numeric
offset, to access local variables stored in the stack frame of the current pro-
cedure. In the Thumb encoding, n is constrained to be a multiple of 4 that is
less than 1024 bytes. What can be done to address variables in a stack frame
that is bigger than this?

2.4 If the push and pop instructions did not exist, what sequences of in-
structions could be used to replace them in the prologue and epilogue of a
subroutine?

2.5 In the program shown in Figure 1, function baz has 64 bytes of space
for local variables, including an integer j at offset 60 from the stack pointer,
and an array b of 10 integers at offset 4. There is a global integer variable i,
and a global array a, also containing 10 integers. Write assembly language
code that might appear in the body of baz, equivalent to the C statement

a[i+j] = 3 * b[i+j];

2.6 Unusually, the subroutine call instruction bl on the Cortex-M0 occupies
32 bits instead of 16, so that it can contain 24 bits of immediate data, enough
to address any even address in a range of ±16MB relative the the pc. About
half the bits of the immediate data are found in the first 16-bit instruction
word, and about half in the second word. Ben Lee User (a student) suggests
that the bl instruction could be implemented by adding a hidden register to
the machine. The first word of a bl instruction would store half the address
bits in the hidden register: then the second word, executed in the next cycle,
would perform the jump, combining the hidden register with its own address
bits. Would this scheme work on a version of the architecture that supported
interrupts? What special provisions would be needed to allow it to work?
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baz:
push {r4-r7, lr}
sub sp, #64
...
add sp, #64
pop {r4-r7, pc}

.bss

.align 2
i:

.space 4

...

.align 2
a:

.space 40

Figure 1: Skeleton for Exercise 2.5

Early versions of the Thumb instruction set were in fact implemented in
this way, but using lr in place of a hidden register. Why was this a better
idea than introducing a new register for the purpose? What risks does it
entail?

2.7 Write in assembly language an implementation of the function toup-
per() with heading

void toupper(char ∗s);

It should modify the null-terminated ascii string s in place, changing each
lower-case letter into the corresponding upper-case letter, and leaving other
characters unchanged.

According to C conventions, the parameter s that is passed to the toupper
function (and arrives in register r0) is the address of the first character of the
string. Subsequent characters are found at addresses s+1, s+2, . . . , up to a
terminating character with the numeric value zero, written ’\0’ in C. Note
that this null character is different from the digit ’0’.

2.8 The factorial function has long been used as an example of recursive
programming: unwisely so, because it can be more simply computed with
a loop. Assuming a machine that has a multiply instruction, implement a
recursive version of factorial in assembly language, and compare it for speed
with a version implemented with a loop.

What programming example does make a good, simple example of the
power of recursion?

2.9 The lecture notes suggest the following code for testing whether a but-
ton on the micro:bit is pressed.

x = GPIO_IN;
if (GET_BIT(x, BUTTON_A) == 0 | | GET_BIT(x, BUTTON_B) == 0) {

// A button is pressed
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}

Then names GET_BIT, BUTTON_A, etc., are defined as macros in hardware.h.
Find out the definitions of these macros, and write a C expression that more
directly represents the operations requested for the test. Then use a disas-
sembler to look at the corresponding object code produced by the C com-
piler, and write C source that represents the operations actually performed
at runtime. Comment whether it is necessary to focus much on the low-level
efficiency of the code we write.

3 Interrupts

3.1 Figure 2 shows the interrupt-based driver for serial output that we stud-
ied in the lecture. The functions intr_disable() and intr_enable() use
the instructions cpsid i and cpsie i to change the PRIMASK bit in the CPU
that allows interrupts. The function pause() uses the wfe instruction to
halt the CPU until an interrupt occurs.

(a) What relationship is maintained among the values of bufin, bufout
and bufcnt? Try to find an alternative implementation with only two
integer variables.

(b) Why is it necessary in serial_putc to disable interrupts before check-
ing txidle?

(c) Why must interrupts be disabled during the command bufcnt++? Hint:
consider the assembly-language equivalent of the command.

(d) Study the difference between the wfe and wfi instructions, and explain
why wfe is needed in this program.

(e) If it was important to have interrupts disabled for the shortest possible
time, how could the code of serial_putc be modified so as to remain
safe?

3.2 Program heart-intr embeds all the code needed to multiplex the LED
display in the handler for the timer interrupt, allowing the ‘main program’ to
be devoted to other tasks – but it can display only a static image. Show how
to enhance it to show an animated heartbeat, like the one in Lab 2. What are
the limitations of this approach?

3.3 The NRF51822 has a hardware random number generator. When it
is appropriately configured, it periodically generates an interrupt that calls
rng_handler, and an eight-bit random number can then be retrieved from
the device register RNG_VALUE before resetting the event flag RNG_VALRDY
to zero. Design an interrupt-based driver for the random number generator;
provide two functions

unsigned randint(void);
unsigned roll(void);

such that randint() returns a random four-byte value each time it is called,
and roll() returns a random integer between 1 and 6, with each outcome
having precisely equal probability. Arrange a suitable buffering scheme so



6 Digital Systems: Collected problems

void uart_handler(void) {
if (UART_TXDRDY) {

UART_TXDRDY = 0;
if (bufcnt == 0)

txidle = 1;
else {

UART_TXD = txbuf[bufout]; bufcnt--;
bufout = (bufout+1) % NBUF;

}
}

}

/* serial_putc -- send output character */
void serial_putc(char ch) {

while (bufcnt == NBUF) pause();

intr_disable();
if (txidle) {

UART_TXD = ch;
txidle = 0;

} else {
txbuf[bufin] = ch; bufcnt++;
bufin = (bufin+1) % NBUF;

}
intr_enable();

}

Figure 2: Code for interrupt-driven serial output

that the caller of these functions does not have to wait if it calls them in-
frequently enough, and introduce a subroutine whenever doing so avoids
repeating the same code in more than one place. What should happen if
random bytes are generated by the hardware faster than the program is con-
suming them?

3.4 A cut-down version of the Cortex-M0 saves only the program counter
and the processor status register to the stack before invoking the interrupt
handler. It does not set lr to a magic value, but leaves it unchanged, and
returning from the interrupt requires a special instruction rti (with encoding
0xbfd0). Design an assembly-language adapter that allows a C function such
as uart_handler in Exercise 3.1 to be installed as an interrupt handler.

3.5 In the buffer overrun attack of Lecture 7, a long sequence of input was
able to overflow the array in the frame of init() and replace its return ad-
dress. This worked because the array was stored at a lower address than
the register save area in init’s stack frame. Would buffer overrun attacks
be prevented if the stack were to grow upwards in memory instead of down-
wards?
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#include "microbian.h"

static volatile int r = 0;

void proc1(int n) {
for (int i = 0; i < 10; i++)

printf("r = %d\n", r);
}

void proc2(int n) {
while (r < 100000) r++;

}

void init(void) {
serial_init();
start("Proc1", proc1, 0, STACK);
start("Proc2", proc2, 0, STACK);

}

Figure 3: Program for Exercise 4.4

4 Operating systems

4.1 In micro:bian, what happens if the function that forms the body of a
process returns? What happens if all such functions return?

4.2 In micro:bian, what happens if a process tries to send a message to
itself?

4.3 A micro:bian process can have a list of processes waiting to send to it.
Imagine a directed graph in which the nodes are processes, and there is an
arrow to each process from all the other processes that are waiting to send
to it. What happens if there is a cycle in this graph? How could such cycles
be detected?

4.4 The program shown in Figure 3 contains two processes that share a
variable r: one process increments r from 0 to 100,000 while the other prints
the value of r ten times. What might we see as output from this program?
Would it make a difference if the calls to start in init were re-ordered?

4.5 Consider a situation where a process is continuously sending charac-
ters to the serial driver. The processor time for a typical context switch to
send and receive a message is about 20 µsec.

(a) How many context switches happen for each character sent?

(b) How much can the UART speed be increased before context switching
time occupies a substantial fraction of the time that the UART takes to
send a character?

(c) Suggest a way of reducing the number of context switches per character
output.
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#include "microbian.h"

void put_string(char *s) {
for (char *p = s; *p != ’\0’; p++)

serial_putc(*p);
}

static const char *slogan[] = {
"no deal is better than a bad deal\n",
"BREXIT MEANS BREXIT!\n"

};

void speaker(int n) {
while (1)

put_string(slogan[n]);
}

void init(void) {
serial_init();
start("May", speaker, 0, STACK);
start("Farage", speaker, 1, STACK);

}

Figure 4: Program for Exercise 4.6

4.6 The program shown in Figure 4 was written to display political slogans,
but (un)fortunately its output is garbled. Why? Closer examination reveals
that characters from the two slogans alternate in the output: “nBoR EdXeIaTl
MiEsA NbSe. . . ”. Why does that happen?

Design a modification to the program that (unlike the Today programme
on Radio 4) allows each speaker to complete a sentence before the other
one intervenes. If your first solution involves the two speakers transmitting
their slogans via a coordinating process (the ‘presenter’), design another so-
lution where the presenter does not handle the text of each slogan, but only
coordinates them by giving them permission to speak, one at a time.

(For authenticity, the two speakers in this simulation repeat the same, tired
phrases over and over again, but your solution should also accommodate a
more fruitful debate, where the two speakers concoct a series of new lies,
using some method that cannot be delegated to the presenter.)

4.7 micro:bian provides an operation

sendrec(dest, type, &m);

that is equivalent to the two calls,

send(dest, type, &m);
receive(REPLY, &m);

It is useful as a form of ‘remote procedure call’, where a client process sends
a request to a server process and then waits for a reply. Outline, in terms
of process states, how this operation can be implemented. What efficiency
advantages does it offer, compared with the equivalent send followed by
receive? How does using sendrec help to ensure process priorities are
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respected in a situation where a low-priority client sends a request to a high-
priority server process?

4.8 The interface of receive requires that a process be prepared to accept
a message either of a specific type, or any message at all. Suggest changes
to the interface and the implementation of micro:bian that would allow any
set of acceptable message types to be specified.

5 Digital logic

5.1 An xor gate z = a ⊕ b has the following truth table:

a b z

0 0 0
0 1 1
1 0 1
1 1 0

(a) Show that ⊕ is associative and commutative. Does it have an identity
element?

(b) Show how to build an xor gate from a 2-input or gate, two 2-input and
gates and two inverters.

(c) Can you still build an xor gate if one of the two and gates is replaced
by an or gate?

(d) Show that the following circuit of four nand gates also computes
z = a ⊕ b.

5.2 (a) Design a CMOS implementation of a nor gate, with the following
truth table.

a b z

0 0 1
0 1 0
1 0 0
1 1 0

(b) In the lecture, we designed a CMOS gate that computed the function

z = ¬((a ∧ b) ∨ c).

Design a gate that computes

w = ¬((a ∨ b) ∧ c)
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instead.

(c) What general principle relates part (a) with the CMOS nand gate de-
signed in lectures, and part (b) with the and–or–not gate designed
there?

5.3 (a) Design a clocked set/reset latch with the following behaviour. There
are two inputs a and b; if a = 1 at a clock edge, then the output z goes
from 0 to 1. The output then remains at 1 until b = 1 at a clock edge,
and then returns to 0. The behaviour if a = b = 1 at any clock edge can
be whatever is easiest to implement.

(b) Enhance your design to produce an additional output w that receives
a pulse for exactly one clock cycle whenever the circuit is triggered by
an event with a = 1, but does not receive another pulse until the circuit
has been reset by setting b = 1 at a clock edge.

5.4 A T-type flip-flop has a control input t , in addition to an edge-triggered
clock input. If t = 1 at a clock edge, then the flip-flop changes state; otherwise
it remains in the same state.

qt t qt+1

0 0 0
0 1 1
1 0 1
1 1 0

(a) Show how to construct a T-type flip-flop from a D-type flip-flop and an
xor gate.

(b) Show how to construct a synchronous binary counter from a row of T-
type flip-flops and a row of and gates. The counter should satisfy the
specification bin(at+1) ≡ bin(at ) + 1 (mod 2n).

(c) Show how to construct a synchronous binary counter from a row of
D-type flip-flops and a row of half-adders.

(d) Use your answer to part (a) to explain the connection between the circuit
in parts (b) and (c).

5.5 Tests with an actual pull-cord light switch installed at the lecturer’s
home reveal that the light does not go on until the cord is released, but goes
off as soon as it is pulled a second time. Modify the bathroom light-switch
circuit to reproduce this behaviour.

5.6 In the lecture, it was shown that the set of connectives {∧, ∨, ¬} is
adequate to express any Boolean function, as is the singleton set {nand}.

(a) Show that the singleton {nor} is also adequate.

(b) Show that the set {xor, ¬} is not adequate. Hint: find a proper subset
of the set of all Boolean functions of two variables x and y that contains
x, y and the two Boolean constants and is closed under xor and ¬.

5.7 A popcount circuit has n Boolean inputs, and computes a binary number
(with blog nc + 1 bits) that counts the number of 1 bits among the inputs.
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(a) Show how to construct a popcount circuit from a balanced tree of adders
so that the combinational path from each input bit passes through
O(log n) adders before reaching the output.

(b) If we use ripple-carry adders to implement the circuit, a k-bit adder has
both size and worst-case delay that are linear in k. Use these facts to
estimate the size and propagation delay of the popcount circuit.

(c) In fact, some of the delays in ripple-carry adders are smaller than the
estimate O(k), because for i ≤ j , the combinational path from the i’th
pair of inputs to the j ’th output has length proportional to j − i + 1. Use
this fact to refine your estimate of the delay of the popcount circuit.

5.8 A bit-serial comparator has two inputs a and b. Successive binary digits
of two numbers are presented at the two inputs on successive clock cycles,
least significant bit first, and the circuit has two outputs L andG that indicate
whether the number presented so far at a is less than or greater than the
number presented at b (up to the preceding clock cycle); both outputs are
zero if the numbers are equal so far. Thus, if the inputs at a and 0, 1, 1, 0
and those at b are 1, 0, 1, 1, then after 4 clock pulses the outputs are L = 1
and G = 0 because 6 = 01102 is less than 13 = 11012.

(a) If the current outputs are Li and Gi and the current input bits are ai
and bi , show how to compute the next outputs Li+1 and Gi+1.

(b) Use the previous part to give the design for a sequential circuit that
inputs the numbers a and b and outputs L and G as described.

(c) What would change if the numbers a and b were presented with their
most significant bit first?

6 Microprocessor architecture

6.1 [Hennessy & Patterson exx. 5.1–2, translated] A common fault in chip
manufacture is that signals become stuck at logic 0 or logic 1. For each of the
following stuck-at faults in the processor design shown in the handout, de-
scribe the effect on the function of the processor. Which instructions would
still work correctly?

(a) cRegSelC = Rx or Rw .

(b) cRand2 = RegB or Imm8.

(c) cMemRd = F or T .

(d) cWReg = N or Y .

(e) cWFlags = F or T .

6.2 When the bl instruction is split into two halves, the decoding table
reveals that the displacement in the first half is sign extended, but that in
the second half is not. Why is this correct?

6.3 Later versions of the ARM chip have compare-and-branch-if-zero in-
structions like

cbz r2, lab
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which tests register r2 and branches to a label (represented by a displace-
ment) if the register contains zero, without affecting the condition flags.
There is also a compare-and-branch-if-nonzero instruction cbnz that works
in a similar way. What factors make these instruction difficult to imple-
ment on our datapath design? Describe in outline the changes that would be
needed to implement them.

6.4 In native ARM code, not just branches, but almost any operation can
be made conditional on the flags. One of the most useful such operations is
a conditional move: the sequence

cmp r0, #0
moveq r0, r1

checks to see if r0 contains zero, and if so, replaces its contents with the con-
tents of r1. Similar instructions exist for all 14 conditions that are supported
for conditional branches, and they all execute in one clock cycle, whether the
move happens or not.

(a) Show how a conditional move instruction can be used to compute the
maximum of two values in registers without using any branches. Com-
pared with the branching code, how much time would be saved in the
Cortex-M0 implementation?

(b) Devise an encoding for conditional moves as Thumb code, and write an
entry for the decoding table that implements them in the single-cycle
architecture. (If you want to add the instructions to the simulator, you
can use the opcodes 24 and 25 that are so far unimplemented.)

(c) Leaving aside the issue of finding suitable encodings for the instruc-
tions, what other operations could be made conditional and imple-
mented with the existing single-cycle datapath? What operations could
not be made conditional without changing the datapath, and why?

6.5 Native ARM code provides an addressing mode where the values of two
registers are added to form the address, but the value of one of the registers
is first shifted left. For example, the instruction

ldr r0, [r2, r3, LSL #2]

loads r0 with the 4-byte value stored at address r2 + r3*4. Native code may
shift the register by any amount, multiplying by any power of two, but we
consider here only scaling by 4 as shown.

(a) Explain why this addressing mode is particularly useful in programs
that contain a lot of array indexing.

(b) Write decoding rules for versions of the ldr and str instructions that
implement this addressing mode. (If you want to add them to the sim-
ulator, you could use opcodes 14 and 15.)


