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The plan now is to put together the elements we have studied into a simple
datapath that can execute Thumb instructions. We’ll do it in stages, adding
at each stage just sufficient logic to implement a few more instructions. The
design we make will be seriously unrealistic, in that all the work of executing
an instruction will be performed inside a single clock cycle: this will lead
to longer combinational paths than we would like, and so require a lower
clock speed. A more practical design would use pipelining to overlap the
execution of each instruction with preparation for the next one. You can
study pipelining and the design questions it raises in next year’s course on
Computer Architecture. For now, we must be content with the observation
that if we wanted a pipelined implementation of the Thumb architecture,
then effort spent on this single-cycle implementation would not be wasted,
because a pipelined design starts with a single-cycle design, drawing lines
across the circuit to separate what happens for a particular instruction in
this clock cycle from what happens in the next.

The design is shown in these notes by means of a sequence of circuit
diagrams, each accompanied by a selection of settings for the control signals
that correspond to instructions that the circuit is capable of executing. The
final design is also represented by a register-level simulator written in C.
The simulator contains tables that decode all the instructions it implements,
and is capable of loading and executing binary images prepared using the
standard Thumb tools.

1 Instruction fetch

The first stage (Figure 1) is to arrange to fetch a stream of instructions from
memory, and decode them into control signals that will drive the rest of the
datapath. For this, let’s install a program counter PC , a register that will, on
each clock cycle, feed the address of the current instruction to a memory unit
IMem so that it fetches a 16-bit instruction. There’s also a simplified adder
that increments the PC value by 2 and feeds it back into the PC as the address
of the next instruction. Some of the 16 bits of the instruction are fed into a
combinational circuit that decodes it, producing a bundle of control signals
that are fed to the functional units in the datapath. Since those functional
units and their connections are yet to be added, we can’t say precisely what
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Figure 1: Instruction fetch
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the control signals are at this stage; but let’s add wiring that makes both the
control signals and the remaining bits of the instruction (those that have not
been accounted for in the encoding) available to each part of the datapath.
We can imagine building the decoder from a ROM or (as we’ll see later) several
ROMs that decode different parts of the instruction.

This design is capable of implementing only straight-line programs with
no branching, because there is no way to avoid a sequence of PC values that
goes 0, 2, 4, 6, . . . . Also, this design doesn’t reflect the fact that instructions
can access the PC alongside the other 15 registers. We’ll adjust the design
later to correct both of these problems.

2 ALU operations

Now let’s add some datapath components: a simple register file and an ALU
(Figure 2). The twin-port register file is capable of reading the values of two
registers and writing a result to a third register, all in the same clock cycle.
We can imagine for now that the three registers are selected by fixed fields
in the instruction, as they are in the add reg instruction:

adds 〈Rx〉,〈Ry〉,〈Rz〉

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 0 0 Rz Ry Rx

In executing this instruction, the two registers that are read are selected by
fields instr〈5:3〉 and instr〈8:6〉 of the instruction. The control unit must ask
the ALU to add its two inputs, producing a result that is fed back to the
register file. The control unit also tells the register file to write the result
back into the register selected by instr〈2:0〉.

The same datapath could be used to implement other instructions that
perform arithmetic on registers – the three-register form of sub, certainly:

subs 〈Rx〉,〈Ry〉,〈Rz〉

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 0 1 Rz Ry Rx

For this instruction, we need to tell the ALU to subtract rather than add. But
we can also implement instructions like ands that specify two registers and
overwrite one of their operands:

ands 〈Rx〉,〈Ry〉

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 0 0 0 Ry Rx

This instruction is a bit different, because the ALU must do a bitwise and
operation, but also because the three registers are selected by different fields
of the instruction, with instr〈2:0〉 used to select both one of the inputs and
the output of the instruction. Let’s leave aside for a while these issues of
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Figure 2: ALU operations
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detail in decoding, and concentrate instead on what features are needed in
the datapath itself.

3 Immediate operands

In addition to instructions that perform ALU operations with the operands
taken from registers, there are also instructions that take the second operand
from a field in the instruction. Examples of this are two forms of the add
instruction:

adds 〈Rx〉,〈Ry〉,#〈imm3〉

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 1 1 1 0 imm3 Ry Rx

adds 〈Rw〉,#〈imm8〉
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 1 0 Rw imm8

We can also cover the immediate form of the mov instruction, if we allow an
ALU operation that simply copies the second operand and ignores the first.

movs 〈Rw〉,#〈imm8〉
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 Rw imm8

To accommodate these, we can introduce a multiplexer on the second input
of the ALU, fed both from the second register value rb and from appropriate
fields of the instruction (Figure 3). The examples above show that it must
provide the option of selecting both instr〈8:6〉 and instr〈7:0〉, and there are
other possibilities we will discover as we proceed.

Now we have a few control signals, we can start to make a table (Figure 4)
showing how they should be set to carry out various instructions. Each con-
trol signal takes a selection of discrete values that can be enumerated by
small integers, and would be represented by bit patterns in a hardware repre-
sentation, but we need not be concerned with which bit pattern corresponds
to which function. For example, the multiplexer that feeds the second input
of the ALU is capable of selecting between the register value rb, the 8-bit
immediate field instr〈7:0〉 and the 3-bit immediate field instr〈8:6〉, as well as
others to be introduced later. We will denote these initial three possibilities
by RegB, Imm8 and Imm3, hoping that these names are self-explanatory, and
not caring what bit patterns are chosen to represent them. What’s more, we
will need a range of functions for the ALU, including the ones we denote here
by Add , Sub, And and Mov – with Mov meaning that the output of the ALU is
the same as its second input. We will add more functions as we need them.

This table will expand as we get further, adding more rows to provide
more instructions, but also more columns to control the extra hardware we
will need to implement them. There will always be settings for any added
control signals that make the new hardware do nothing, so that we can still
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Figure 3: Immediate operands
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Instruction cRand2 cAluOp cRegWrite

adds r RegB Add T
adds i3 Imm3 Add T
adds i8 Imm8 Add T
subs r RegB Sub T
subs i3 Imm3 Sub T
subs i8 Imm8 Sub T
ands r RegB And T
movs r RegB Mov T
movs i8 Imm8 Mov T

Figure 4: Decoding table with immediate operands

get the effect of these early instructions unchanged. We’ve still to deal with
the issue of what registers are selected to take part in the instructions, and
we have also yet to provide for the fact these instructions all set the condition
codes. And so far, all instructions write their result into a register: that will
change too.

4 Data memory

Now let’s add a second interface to memory, so that we can implement load
and store instructions. We’ll use what’s called a modified Harvard archi-
tecture, meaning that the data memory will be treated separately from the
instruction memory. They could be separate memories, as on some micro-
controllers like the PIC, or we could imagine having two independent caches
in front of the same memory, and modelling just the things that happen when
there is a cache hit all the time, not the periods of suspended animation when
the processor core is waiting for a memory transaction to complete. Either
way, this is different from the von Neumann architecture of ARM’s Cortex-M0
implementation, where there is one memory interface, and loads and stores
are executed in an extra cycle between instruction fetches.

The Thumb instruction set provides instructions like ldr r0, [r1, r2] and
str r0, [r1, r2] that form an address by adding the contents of two registers
r1 and r2, and either load a memory word and save it in a third register r0,
or take a value from r0 and store it.

ldr 〈Rx〉,[〈Ry〉,〈Rz〉]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 1 0 0 Rz Ry Rx

str 〈Rx〉,[〈Ry〉,〈Rz〉]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 1 0 0 0 Rz Ry Rx

We should notice two requirements for the datapath: first, that we need to
form addresses by adding, and second, that the str instruction here reads
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Figure 5: Data memory
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Instruction cRand2 cAluOp cMemRd cMemWr cRegWrite

adds r RegB Add F F T
movs i8 Imm8 Mov F F T
ldr r RegB Add T F T
str r RegB Add F T F

Figure 6: Decoding table for data memory

not two but all three of the registers named in the instruction. We can use
the existing ALU to do the address calculation, and we can easily enhance the
register file with an extra mux so that it outputs the current value of all three
named registers. If the third register value isn’t needed (as in all instructions
except a store) then it costs nothing to compute it anyway (Figure 5).

In addition to the third register value rc , the diagram shows two further
architectural elements. There’s the data memory DMem, with two data in-
puts, one data output and two control inputs, both single bits. The two data
inputs are an address, taken from the ALU output, and a value to be stored,
taken from rc . The data output is a value memout that has been loaded from
memory, and this together with aluout feeds a new mux that determines the
result of the instruction. The two control inputs for the memory are cMemRd
and cMemWr , telling it whether to conduct a read cycle, a write cycle, or (if
the instruction is not a load or store) neither. Writing when we don’t want to
write is obviously harmful, and reading unnecessarily might also be harmful
if it causes a cache miss, or an exception for an invalid address. The result
mux can be controlled by the same cMemRd signal, so that the result of the
instruction is memout for load instructions and aluout for everything else.

Let’s enhance the decoding table to cover these two new instructions, as
shown in Figure 6. I’ve kept just a few of the existing instructions, extending
the lines for them to include values for cMemRd = cMemWr = F that main-
tain the same function as before; the other instructions can be extended in
the same way. I’ve added entries for the ldr and str with the reg+reg ad-
dressing mode. Note that str is the first instruction that doesn’t write its
result back to a register. There will be others, so while it was tempting be-
fore to suppose cRegWrite = T always, and it’s tempting now to suppose
cRegWrite = ¬cMemWr , we will see later that neither of these are true.

5 Barrel shifter

As the next step, let’s add a barrel shifter to the datapath, so that we can
implement shift instructions like the following.

lsls 〈Rx〉,〈Ry〉,#〈imm5〉

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 imm5 Ry Rx
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Figure 7: Barrel shifter
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Instruction cRand2 cShiftOp cShiftAmt cAluOp cMemRd cMemWr cRegWrite

adds r RegB Lsl Sh0 Add F F T
movs i8 Imm8 Lsl Sh0 Mov F F T
ldr r RegB Lsl Sh0 Add T F T
str r RegB Lsl Sh0 Add F T F
lsls i5 RegB Lsl ShImm Mov F F T
rors r RegB Ror ShReg Mov F F T
ldr i5 Imm5 Lsl Sh2 Add T F T
str i5 Imm5 Lsl Sh2 Add F T F

Figure 8: Decoding table for barrel shifter

rors 〈Rx〉,〈Ry〉

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 1 1 1 Ry Rx

We could make a barrel shifter part of the ALU, so that left and right shifts
were added to the list of ALU operations; or failing that, we could put the
shifter ’in parallel’ with the ALU, feeding its output together with those of
the ALU and the data memory into the result mux. That would allow us to
implement the shift instructions OK, but it would be less versatile. We can
take a glance at big-ARM instructions like

ldr r0, [r1, r2, LSL #2].

This shifts left by 2 bits the value of r2, adds that to the value of r1 to form
an address, loads from that address, and puts the result in r0, all in one
instruction. This is really useful if r1 contains the base address of an array
and r2 contains an index into the array. Sadly, Thumb code doesn’t have
a way to encode all that in one instruction. We can nevertheless provide
for such operations by adding a barrel shifter in front of the ALU, operating
on the value that will become the ALU’s second input (Figure 7). There is a
control signal to set the operation – Lsl , Lsr , Asr or Ror – to be performed by
the shifter. There’s also a mux that lets us choose the shift amount, either
a constant like 0 or 2 (Sh0 or Sh2), or an immediate field of the instruction
(ShImm), or a value taken from the first register ra read by the instruction
(ShReg).

There are two new control signals, cShiftOp and cShiftAmt . Existing in-
structions will continue to work if we set cShiftOp = Lsl and cShiftAmt = Sh0,
representing the constant 0.

ldr 〈Rx〉,[〈Ry〉,#〈imm5〉]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 1 imm5 Ry Rx
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str 〈Rx〉,[〈Ry〉,#〈imm5〉]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 0 0 imm5 Ry Rx

We can make good use of the shifter in implementing load and store instruc-
tions with the reg+imm addressing mode, because it is specified that the
offset should be multiplied by 4 in such instructions, and we can get the
shifter to do the multiplication. Figure 8 shows the control signals for some
existing instructions, plus the two shift instructions and the reg+imm forms
of ldr and str.

The disadvantage of putting the barrel shifter ’in series’ with the ALU is
that it lengthens the combinational paths, one of which now stretches from
the register file, through shifter, ALU and data memory, back to the register
file. The long path will slow the maximum clock rate that can be supported
by the machine.

6 PC as a register

Up to now, we have kept the PC separate from the general register files, as
indeed it is on some architectures. But on the ARM, the PC can be accessed
like other registers, and used in PC-relative addressing. So our next step is to
merge the PC into the register file, using a design for a ’turbocharged’ register
file we prepared earlier (Figure 9). In addition to the three selectable outputs
that can output the value of any register (including the PC), there is now a
special-purpose output that always carries the (current) PC value. There is
also a separate input that receives the value of PC+2, which will be written
to the PC if it is not specifically selected for the writing of a different value:
this allows for the implementation of branch instructions at a later point.
We’ll assume that the design of the register file includes an adjustment so
that, when the PC is read as an ordinary register, the specified value PC+4 is
output.

7 Instruction decoding

We’ve got quite a good table of control signals now, so it’s time to fill in
more details of the decoding process (Figure 10). Each instruction uses up
to three registers, sometimes selected by fields in the instruction, and some-
times fixed as SP or LR or PC. To sort this out, we can add three identical
multiplexers, driven by control signals cRegSelA, cRegSelB, cRegSelC , that
either select one of a list of fields (Rx, Ry , Rz, Rw) from the instruction or
give a fixed value (Rsp, Rlr , Rpc). The other addition in this figure is a unit
called alusel . This tidies up a couple of pairs instructions where the ALU op-
eration could be add or subtract, but the decision is not determined by the
first few bits of the instruction. One such pair are the forms add/sub r/i3
shown earlier that use bit instr〈10〉 to decide whether the second operand is
a register or a 3-bit immediate field, and use bit instr〈9〉 to decide between
adding and subtracting. The alusel decoder sorts out the details, and the
details can be found in the code of the simulator.

Let’s refresh the table of control signals, adding the three register selec-
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Figure 9: Turbocharged register file
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tors (see Figure 11. We’ll do that first for our existing selection of example
instructions first, a fair selection of instructions for the machine, especially
if we let ands stand as an example of register-to-register ALU operations and
rors stand as an example of shifts with the shift amount taken from a regis-
ter. Most instructions can be identified from their first five bits and set out in
a table of 32 possibilities. Among those implemented in the simulator, most
of the rest start with 010000 or 010001, and can be identified using two
further, smaller tables. All these tables could become ROMs in a hardware
implementation. This part of a Thumb implementation is more complicated
than is typical for RISC machines because of the variety of instruction for-
mats. For comparison, the MIPS has just three instruction formats, all 32 bits
long: one that names three registers, one that has two registers and a 16-bit
immediate field, and a third format with a large offset for subroutine calls.

The datapath as it stands also contains the resources to implement a num-
ber of other instructions. For example, there is are several instructions that
implicitly involve the stack pointer, including ones that add or subtract a
constant from the stack pointer, using bit instr〈7〉 to decide which.

add sp,sp,#〈imm7〉

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 0 0 0 imm7

sub sp,sp,#〈imm7〉

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 1 0 0 0 0 1 imm7

There are also an instruction that forms an address by adding a constant and
the stack pointer, and instructions that load and store from that address.

add 〈Rw〉,sp,#〈imm8〉

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0 1 Rw imm8

ldr 〈Rw〉,[sp,#〈imm8〉]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 1 Rw imm8

str 〈Rw〉,[sp,#〈imm8〉]

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 0 1 0 Rw imm8

All of these can be implemented using the register selector Rsp, as shown in
the next few lines of Figure 11.

We can also implement unconditional branches that add a signed 11-bit
constant to the PC.

b 〈disp11〉

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 0 0 disp11
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Instruction cRegSel cRand2 cShift cAluSel cMem cRegWrite︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
A B C Op Amt Rd Wr

adds/subs r/i3 Ry Rz Rx RImm3 Lsl Sh0 Sg9 F F T
movs i8 – – Rw Imm8 Lsl Sh0 Mov F F T
ldr r Ry Rz Rx RegB Lsl Sh0 Add T F T
str r Ry Rz Rx RegB Lsl Sh0 Add F T F
lsls i5 – Ry Rx RegB Lsl ShImm Mov F F T
ands r Rx Ry Rx RegB Lsl Sh0 And F F T
rors r Ry Rx Rx RegB Ror ShReg Mov F F T
ldr i5 Ry – Rx Imm5 Lsl Sh2 Add T F T
str i5 Ry – Rx Imm5 Lsl Sh2 Add F T F

add/sub sp Rsp – Rsp Imm7 Lsl Sh2 Sg7 F F T
add rsp Rsp – Rw Imm8 Lsl Sh2 Add F F T
ldr sp Rsp – Rw Imm8 Lsl Sh2 Add T F T
str sp Rsp – Rw Imm8 Lsl Sh2 Add F T F

b Rpc – Rpc SImm11 Lsl Sh1 Add F F T

Figure 11: Decoding table for register selection

Instruction cRegSel cRand2 cShift cAluSel cMem cRegWrite cWLink︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
A B C Op Amt Rd Wr

bx/blx r – Ryy Rpc RegB Lsl Sh0 Mov F F T C

bl1 Rpc – Rlr SImm11 Lsl Sh12 Add F F T N
bl2 Rlr – Rpc Imm11 Lsl Sh1 Add F F T Y

Figure 12: Decoding table for subroutine calls

The last line of the table shows the control signals that are needed. As you
can see, the displacement is multiplied by 2 before adding it to the PC. This
implementation depends on two features of the register file: that the PC
reads as PC+4 when accessed as a numbered register, and that writing the
PC explicitly takes precedence over the usual update with nextpc = pc + 2.

8 Subroutine calls

In order to implement the branch-and-link instructions bl and blx, we need
one extra feature of the register file, and one small enhancement to the data-
path. The register file has one further control input cLink that, when active,
causes the nextpc value to be written to the link register LR, in addition to the
normal updating of registers (Figure 13). This will permit us to implement
an instruction that simultaneously sets the link register to a return address
while loading the entry point of a subroutine into the PC.

The bx r and blx r instructions contain a 4-bit register field instr〈6:3〉 that
I will denote by Ryy : it permits the naming of the high registers r8 . . . r15



8 Subroutine calls 17

cM
em

R
d

Im
em

R
eg

Fi
le

ne
xt
pc

+2

sh
ift
in

rand2sel

sh
ift
am

t

shiftsel

al
ui
n2

Sh
ift

er

al
uo
ut

AL
U

m
em

ou
t

D
m

em

re
su
lt

result

cR
eg
W
rit
e

cR
eg
Se

lA

cR
eg
Se

lB

cR
eg
Se

lC

cW
Li
nk

cA
lu
Se

l
D

ec
od

e

regselA regselB regselC

linksel
1 0

cS
hi
ftA

m
t

cS
hi
ftO

p

cM
em

W
r

pc

rc

rc

pcra

ra

cA
lu
O
p

cR
eg
B

cR
eg
A

cR
eg
C

cL
in
k

C
op

yr
ig

ht
 (C

) 2
01

9 
J.

 M
. S

pi
ve

y

Si
ng

le
-c

yc
le

 T
hu

m
b 

da
ta

pa
th

cR
an
d2

in
st
r

rb

al
us

el

Figure 13: Subroutine calls
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in addition to the low registers r0 . . . r7: in particular, we can use LR as the
branch target as part of the action of returning from a subroutine.

bx 〈Ryy〉

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 1 1 0 Ryy 0 0 0

blx 〈Ryy〉

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 1 1 1 1 Ryy 0 0 0

Because the bx r and blx r instructions differ in only one bit, we need an extra
multiplexer to derive the cLink control signal, with three settings – 0 for most
instructions, 1 for the bl2 instruction (see below), and a copy of instr〈7〉 for
the bx and blx instructions. The three values of the cWLink control signal for
the multiplexer are denoted N , Y and C in Figure 12. Existing instructions
are extended with cWLink = N, and the rule shown in the table covers the
two branch-to-register instructions.

As hinted in an earlier problem sheet, the 32-bit bl instruction can, in
simple cases, be executed in two halves that we shall call bl1 and bl2.

bl1, 〈simm10〉
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 S imm10

bl2, 〈imm11〉
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 J1 1 J2 imm11

The first half starts with bits 11110, and the second half starts with 11111,
provided we assume bits J1 and J2 are both 1, as traditionally they were:
only very long branches will make them anything else. We will implement
the bl1 instruction by adding the offset, scaled appropriately, to the PC and
putting the result in LR; then we implement bl2 by adding the second half of
the offset to the LR, and putting the result in the PC, simultaneously setting
LR to the return address.

9 Conditional execution

There are several features of the Thumb instruction set that we’re not going
to implement, but one remains that is essential to writing working programs,
and that is the mechanism for conditional branches: arithmetic instructions
set the status bits NZCV, and there is a form of branch instruction that con-
tains one of 14 conditions defined as logical combinations of the status bits.

b〈c〉 〈imm8〉
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 1 0 1 cond imm8
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Figure 14: Conditional execution
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Instruction cRegSel cRand2 cShift cAluSel cMem cWFlags cWLink︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
A B C Op Amt Rd Wr cWReg

b〈c〉 Rpc – Rpc SImm8 Lsl Sh1 Add F F F C N
subs ri Rw – Rw Imm8 Lsl Sh0 Sub F F T Y N
cmp ri Rw – – Imm8 Lsl Sh0 Sub F F T N N

Figure 15: Decoding table for conditional branches

Our approach to implementing conditional branches will be to use the ALU
to compute the target address of the branch from the PC value and the dis-
placement, but to make the writing of the result into the PC conditional on
the test being passed. Three new datapath elements and two new control
signals will be needed. There is a small, 4-bit register to hold the NZCV flags,
and a control signal that determines whether the flags are updated by each
instruction. A separate, combinational circuit takes the register contents and
the four-bit condition field shown in the instruction format, and computes a
signal enable that indicates whether the condition is satisfied (Figure 14). As
usual, this circuit functions in every instruction, whether it is a conditional
branch or not, and produces a nonsense output except when a conditional
branch is in progress. The decision whether to write the result of an in-
struction back to a register becomes a dynamic one: in place of the signal
cRegWrite appearing in the decoding table, there is a signal cWReg that takes
values Y , N and C, with C denoting that the cRegWrite signal is taken from
enabled .

We can add the new signals to the table for existing instructions (Figure 15):
cWFlags indicates whether the instruction should write the flags or not: T for
adds and lsls and all the other arithmetic and logical instructions, F for loads
and stores and branches. The values T and F for cRegWrite are replaced
by values Y and N for cWReg, with C used only in the following rule for
conditional branch instructions.

For comparison, the rules for subs ri and cmp ri are also given in the table:
the only difference between them is that after the subtraction is performed,
the subs instruction writes a register as well as updating the flags, and the
cmp instruction just updates the flags. It’s important to note that conditional
branches read but don’t destroy the flags: that makes it possible to have one
compare instruction followed by several branches conditional on its result.

Context: None of the detail here really matters, except as an illustration of
the challenges faced by a datapath designer. The hardware, once designed,
is fixed, and must be designed so that, with appropriate settings of the con-
trol signals, every machine language instruction can be implemented. For a
single-cycle design like this one, where each instruction takes exactly one clock
cycle, the instruction decoder essentially expands each instruction into a long
string of control bits, reversing a kind of compression that makes some useful
operations expressible in the limited number of instruction bits, and others not
expressible at all.
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10 Summary of control signals

Figure 16 shows a summary of the named signals in the datapath. We can
distinguish between decoded signals, which are determined by the opcode as
looked up in the ROM, and therefore the same for all instances of an instruc-
tion, derived signals, which are the same for every execution of a particular
instruction, and dynamic signals, which will differ from one execution of an
instruction to the next. Figure 17 shows the values of the decoded signals
for each instruction implemented in the simulator.

Decoded Derived Dynamic Description

pc Program counter value
instr The 16-bit instruction

cRegSelA,
cRegSelB,
cRegSelC

Three rules for selecting registers

cRegA,
cRegB,
cRegC

The three register numbers

ra, rb, rc The contents of the three registers
nextpc Address of the next instruction

cRand2 Rule for selecting shifter input
shiftin Input to the shifter

cShiftOp Shift operation
cShiftAmt Rule for determining shift amount

shiftamt Amount of shift
aluin2,
shcarry

Outputs from the shifter

cAluSel Rule for determining ALU operations
cAluOp The ALU operation

aluout,
newflags

Outputs from the ALU

cMemRd,
cMemWr

Whether to read or write the memory

memout Result of memory read
result Result for write-back

cWFlags Whether to update the flags
cCond Condition to test

enable Whether the condition is satisfied
cWReg Rule for writing result register

regwrite Whether result will be written
cWLink Rule for updating link register

cLink Whether link register will updated

Figure 16: Signals in the datapath
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Instruction cRegSel cRand2 cShift cAluSel cMem cWFlags cWLink︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷
A B C Op Amt Rd Wr cWReg

lsls i5 – Ry Rx RegB Lsl ShImm Mov F F T Y N
lsrs i5 – Ry Rx RegB Lsr ShImm Mov F F T Y N
asrs i5 – Ry Rx RegB Asr ShImm Mov F F T Y N
adds/subs i3 Ry Rz Rx RImm3 Lsl Sh0 Bit9 F F T Y N
movs i8 – – Rw Imm8 Lsl Sh0 Mov F F T Y N
cmp i8 Rw – – Imm8 Lsl Sh0 Sub F F T N N
adds i8 Rw – Rw Imm8 Lsl Sh0 Add F F T Y N
subs i8 Rw – Rw Imm8 Lsl Sh0 Sub F F T Y N
ands r Rx Ry Rx RegB Lsl Sh0 And F F T Y N
eors r Rx Ry Rx RegB Lsl Sh0 Eor F F T Y N
lsls r Ry Rx Rx RegB Lsl ShReg Mov F F T Y N
lsrs r Ry Rx Rx RegB Lsr ShReg Mov F F T Y N
asrs r Ry Rx Rx RegB Asr ShReg Mov F F T Y N
adcs r Rx Ry Rx RegB Lsl Sh0 Adc F F T Y N
sbcs r Rx Ry Rx RegB Lsl Sh0 Sbc F F T Y N
rors r Ry Rx Rx RegB Ror ShReg Mov F F T Y N
tst r Rx Ry – RegB Lsl Sh0 And F F T N N
negs r – Ry Rx RegB Lsl Sh0 Neg F F T Y N
cmp r Rx Ry – RegB Lsl Sh0 Sub F F T N N
cmn r Rx Ry – RegB Lsl Sh0 Add F F T N N
orrs r Rx Ry Rx RegB Lsl Sh0 Orr F F T Y N
muls r Rx Ry Rx RegB Lsl Sh0 Mul F F T Y N
bics r Rx Ry Rx RegB Lsl Sh0 Bic F F T Y N
mvns r – Ry Rx RegB Lsl Sh0 Mvn F F T Y N
add hi Rxx Ryy Rxx RegB Lsl Sh0 Add F F F Y N
cmp hi Rxx Ryy – RegB Lsl Sh0 Sub F F T N N
mov hi – Ryy Rxx RegB Lsl Sh0 Mov F F F Y N
bx/blx r – Ryy Rpc RegB Lsl Sh0 Mov F F F Y C
ldr pc Rpc – Rw Imm8 Lsl Sh2 Adr T F F Y N
str r Ry Rz Rx RegB Lsl Sh0 Add F T F N N
ldr r Ry Rz Rx RegB Lsl Sh0 Add T F F Y N
str i5 Ry – Rx Imm5 Lsl Sh2 Add F T F N N
ldr i5 Ry – Rx Imm5 Lsl Sh2 Add T F F Y N
str sp Rsp – Rw Imm8 Lsl Sh2 Add F T F N N
ldr sp Rsp – Rw Imm8 Lsl Sh2 Add T F F Y N
add pc Rpc – Rw Imm8 Lsl Sh2 Adr F F F Y N
add sp Rsp – Rw Imm8 Lsl Sh2 Add F F F Y N
add/sub sp Rsp – Rsp Imm7 Lsl Sh2 Bit7 F F F Y N
b〈c〉 Rpc – Rpc SImm8 Lsl Sh1 Add F F F C N
b Rpc – Rpc SImm11 Lsl Sh1 Add F F F Y N
bl1 Rpc – Rlr SImm11 Lsl Sh12 Add F F F Y N
bl2 Rlr – Rpc Imm11 Lsl Sh1 Add F F F Y Y

Figure 17: Decoding table for all instructions


