
Digital Systems: Problem sheet 1

Mike Spivey, Hilary Term, 2022

Questions on this sheet probe details of ARM Cortex-M0 assembly language,
and also of its encoding as binary machine code. It can’t be emphasised
enough that, though a lot of this detail is needed for the experience of under-
standing how a particular computer works (which every Computer Science
student should enjoy at some stage), it isn’t detail that is worth memorising in
the medium term. Id est, it won’t be on the exam.

1 Find as many single Thumb instructions as you can that have the effect
of setting register r0 to zero, and as many as you can that copy register r1
to register r0. In each case, the instruction may or may not set the condition
codes: say which.

To answer this exercise, use the ARM Architecture Reference Manual (linked
from the micro:bit page on the wiki) to look up the details of some of the
instructions shown in red, orange, yellow or green in tables [A] and [B] of the
Rainbow Chart.

2 The following listing shows a disassembly of the simple multiplication
routine from the lecture.

func:
c0: 2200 movs r2, #0

loop:
c2: 2900 cmp r1, #0
c4: d002 beq cc <done>
c6: 3901 subs r1, #1
c8: 1812 adds r2, r2, r0
ca: e7fa b c2 <loop>

done:
cc: 0010 movs r0, r2
ce: 4770 bx lr

(I’ve edited it a bit to remove distracting details.) Decode some of the in-
structions by hand, and in particular explain the displacements that appear
in the beq and b instructions.

Again look up the instructions in the ARM Architecture Reference Manual,
and use the information about encodings given there to decypher some of the
hexadecimal numbers shown in the listing.

Copyright © 2018–23 J. M. Spivey 1



2 Digital Systems: Problem sheet 1

3 As it stands, the multiplication routine shown in Exercise 2 has a loop
that contains 5 instructions, and takes 7 cycles for each iteration but the
last: three cycles for the branch back to the start, and one cycle for each
of the other instructions, including the untaken conditional branch. Try to
rewrite the loop so that it contains fewer instructions. A good solution has
3 instructions in the loop, taking 5 cycles per iteration, but it is possible to go
further using ‘loop unrolling’ and make a still faster routine.

4 Note that conditional branch instructions in Thumb code, such as beq,
have a displacement field of limited size, but the unconditional branch b
has a bigger displacement field. Show how a two-instruction sequence can
be used to simulate conditional branches with a bigger range than can be
achieved with a single beq. What is the penalty in execution time for doing
this? The branch-and-link instruction bl has a still larger displacement field.
Can it be used in a similar way to simulate even longer conditional branches?

5 Show with examples why different instructions blt and blo are needed
following comparison of signed and unsigned numbers. Find out the con-
ditions under which each of these branches is taken, and explain why the
result is correct in each case.

6 Write (in some high-level language – C, Scala, or Python if you must) a
routine for unsigned integer division, using the näıve algorithm based on
repeated subtraction. Code the result in assembly language.

To answer this problem well, you must: formulate precisely the problem to
be solved; give a clear algorithm for the problem and justify its correctness;
code the algorithm in commented assembly language in an efficient way, con-
sidering the possibility of overflow; comment on errors that should be detected.

7 Repeat the previous exercise using a better algorithm. Fancier versions
of the ARM have an instruction clz r1, r2 that sets r1 to the number of
leading zeroes in the binary number in r2; what use is this instruction in
writing a division routine?


