
Digital Systems: Problem sheet 2

Mike Spivey, Hilary Term, 2022

This sheet again probes details of the encoding of ARM instructions as bi-
nary machine code. The details are interesting because they reflect which
instructions are most useful in programming. Undergraduates have no need
to memorise everything, and in fact suitable compact reference material will
be provided in the exam.

1 Thumb provides encodings for the following instructions, with n a small
constant. In each case, suggest a use for the instruction in implementing the
constructs of a high-level language.

ldr r1, [pc, #n] add r1, pc, #n

ldr r1, [r2, r3] add r1, sp, #n

ldr r1, [r2, #n] add sp, sp, #n

ldr r1, [sp, #n]

In native code, these instructions have a uniform encoding that allows any
register to be used for any purpose. In Thumb code, only some forms of the
instructions have been given an encoding, and the designers have deliberately
chosen to spend encoding space on instructions that are useful for some pur-
pose: but what?

2 There are two instructions, ldrh and ldrsh, that load a 16-bit quantity
from memory and put it in a 32-bit register, but only one instruction strh
that stores into a 16-bit memory location. What is the difference between the
two load instructions, and why is only one store instruction needed? Thumb
provides no encoding for the form ldrsh r1, [r2, #n]; what equivalent
sequence of instructions can be used instead?

3 We have used the instruction ldr r1, [sp, #n], where n is a numeric
offset, to access local variables stored in the stack frame of the current pro-
cedure. In the Thumb encoding, n is constrained to be a multiple of 4 that is
less than 1024 bytes. What can be done to address variables in a stack frame
that is bigger than this?

4 If the push and pop instructions did not exist, what sequences of in-
structions could be used to replace them in the prologue and epilogue of a
subroutine?

Copyright © 2018–23 J. M. Spivey 1

2 Digital Systems: Problem sheet 2

baz:
push {r4-r7, lr}
sub sp, #64
...
add sp, #64
pop {r4-r7, pc}

.bss

.align 2
i:

.space 4

...

.align 2
a:

.space 40

Figure 1: Skeleton for Exercise 5

5 In the program shown in Figure 1, function baz has 64 bytes of space
for local variables, including an integer j at offset 60 from the stack pointer,
and an array b of 10 integers at offset 4. There is a global integer variable i,
and a global array a, also containing 10 integers. Write assembly language
code that might appear in the body of baz, equivalent to the C statement

a[i+j] = 3 * b[i+j];

6 Unusually, the subroutine call instruction bl on the Cortex-M0 occupies
32 bits instead of 16, so that it can contain 24 bits of immediate data, enough
to address any even address in a range of ±16MB relative the the pc. About
half the bits of the immediate data are found in the first 16-bit instruction
word, and about half in the second word. Ben Lee User (a student) suggests
that the bl instruction could be implemented by adding a hidden register to
the machine. The first word of a bl instruction would store half the address
bits in the hidden register: then the second word, executed in the next cycle,
would perform the jump, combining the hidden register with its own address
bits. Would this scheme work on a version of the architecture that supported
interrupts? What special provisions would be needed to allow it to work?

Early versions of the Thumb instruction set were in fact implemented in
this way, but using lr in place of a hidden register. Why was this a better
idea than introducing a new register for the purpose? What risks does it
entail?

7 Write in assembly language an implementation of the function toup-
per() with heading

void toupper(char ∗s);

It should modify the null-terminated ascii string s in place, changing each
lower-case letter into the corresponding upper-case letter, and leaving other
characters unchanged.

Digital Systems: Problem sheet 2 3

According to C conventions, the parameter s that is passed to the toupper
function (and arrives in register r0) is the address of the first character of the
string. Subsequent characters are found at addresses s+1, s+2, . . . , up to a
terminating character with the numeric value zero, written ’\0’ in C. Note
that this null character is different from the digit ’0’.

8 The factorial function has long been used as an example of recursive
programming: unwisely so, because it can be more simply computed with
a loop. Assuming a machine that has a multiply instruction, implement a
recursive version of factorial in assembly language, and compare it for speed
with a version implemented with a loop.

What programming example does make a good, simple example of the
power of recursion?

9 The lecture notes suggest the following code for testing whether a button
on the micro:bit is pressed.

x = GPIO_IN;
if (GET_BIT(x, BUTTON_A) == 0 | | GET_BIT(x, BUTTON_B) == 0) {

// A button is pressed
}

Then names GET_BIT, BUTTON_A, etc., are defined as macros in hardware.h.
Find out the definitions of these macros, and write a C expression that more
directly represents the operations requested for the test. Then use a disas-
sembler to look at the corresponding object code produced by the C com-
piler, and write C source that represents the operations actually performed
at runtime. Comment whether it is necessary to focus much on the low-level
efficiency of the code we write.

