
Digital Systems: Problem sheet 3

Mike Spivey, Hilary Term, 2022

1 Figure 1 shows the interrupt-based driver for serial output that we stud-
ied in the lecture. The functions intr_disable() and intr_enable() use
the instructions cpsid i and cpsie i to change the PRIMASK bit in the CPU
that allows interrupts. The function pause() uses the wfe instruction to
halt the CPU until an interrupt occurs.

(a) What relationship is maintained among the values of bufin, bufout
and bufcnt? Try to find an alternative implementation with only two
integer variables.

(b) Why is it necessary in serial_putc to disable interrupts before check-
ing txidle?

(c) Why must interrupts be disabled during the command bufcnt++? Hint:
consider the assembly-language equivalent of the command.

(d) Study the difference between the wfe and wfi instructions, and explain
why wfe is needed in this program.

(e) If it was important to have interrupts disabled for the shortest possible
time, how could the code of serial_putc be modified so as to remain
safe?

2 Program heart-intr embeds all the code needed to multiplex the LED
display in the handler for the timer interrupt, allowing the ‘main program’ to
be devoted to other tasks – but it can display only a static image. Show how
to enhance it to show an animated heartbeat, like the one in Lab 2. What are
the limitations of this approach?

3 The NRF51822 has a hardware random number generator. When it is ap-
propriately configured, it periodically generates an interrupt that calls rng_
handler, and an eight-bit random number can then be retrieved from the de-
vice register RNG_VALUE before resetting the event flag RNG_VALRDY to zero.
Design an interrupt-based driver for the random number generator; provide
two functions

unsigned randint(void);
unsigned roll(void);

Copyright © 2018–23 J. M. Spivey 1



2 Digital Systems: Problem sheet 3

void uart_handler(void) {
if (UART_TXDRDY) {

UART_TXDRDY = 0;
if (bufcnt == 0)

txidle = 1;
else {

UART_TXD = txbuf[bufout]; bufcnt--;
bufout = (bufout+1) % NBUF;

}
}

}

/* serial_putc -- send output character */
void serial_putc(char ch) {

while (bufcnt == NBUF) pause();

intr_disable();
if (txidle) {

UART_TXD = ch;
txidle = 0;

} else {
txbuf[bufin] = ch; bufcnt++;
bufin = (bufin+1) % NBUF;

}
intr_enable();

}

Figure 1: Code for interrupt-driven serial output

such that randint() returns a random four-byte value each time it is called,
and roll() returns a random integer between 1 and 6, with each outcome
having precisely equal probability. Arrange a suitable buffering scheme so
that the caller of these functions does not have to wait if it calls them in-
frequently enough, and introduce a subroutine whenever doing so avoids
repeating the same code in more than one place. What should happen if
random bytes are generated by the hardware faster than the program is con-
suming them?

4 A cut-down version of the Cortex-M0 saves only the program counter
and the processor status register to the stack before invoking the interrupt
handler. It does not set lr to a magic value, but leaves it unchanged, and
returning from the interrupt requires a special instruction rti (with encoding
0xbfd0). Design an assembly-language adapter that allows a C function such
as uart_handler in Exercise 1 to be installed as an interrupt handler.

5 In the buffer overrun attack of Lecture 7, a long sequence of input was
able to overflow the array in the frame of init() and replace its return ad-
dress. This worked because the array was stored at a lower address than
the register save area in init’s stack frame. Would buffer overrun attacks
be prevented if the stack were to grow upwards in memory instead of down-
wards?


