
Digital Systems: Problem sheet 6

Mike Spivey, Trinity Term, 2022

1 [Hennessy & Patterson exx. 5.1–2, translated] A common fault in chip
manufacture is that signals become stuck at logic 0 or logic 1. For each
of the following stuck-at faults in the processor design shown in the hand-
out, describe the effect on the function of the processor. Which instructions
would still work correctly?

(a) cRegSelC = Rx or Rw .

(b) cRand2 = RegB or Imm8.

(c) cMemRd = F or T .

(d) cWReg = N or Y .

(e) cWFlags = F or T .

2 When the bl instruction is split into two halves, the decoding table re-
veals that the displacement in the first half is sign extended, but that in the
second half is not. Why is this correct?

3 Later versions of the ARM chip have compare-and-branch-if-zero instruc-
tions like

cbz r2, lab

which tests register r2 and branches to a label (represented by a displace-
ment) if the register contains zero, without affecting the condition flags.
There is also a compare-and-branch-if-nonzero instruction cbnz that works
in a similar way. What factors make these instruction difficult to imple-
ment on our datapath design? Describe in outline the changes that would be
needed to implement them.

4 In native ARM code, not just branches, but almost any operation can be
made conditional on the flags. One of the most useful such operations is a
conditional move: the sequence

cmp r0, #0
moveq r0, r1

Copyright © 2018–23 J. M. Spivey 1



2 Digital Systems: Problem sheet 6

checks to see if r0 contains zero, and if so, replaces its contents with the con-
tents of r1. Similar instructions exist for all 14 conditions that are supported
for conditional branches, and they all execute in one clock cycle, whether the
move happens or not.

(a) Show how a conditional move instruction can be used to compute the
maximum of two values in registers without using any branches. Com-
pared with the branching code, how much time would be saved in the
Cortex-M0 implementation?

(b) Devise an encoding for conditional moves as Thumb code, and write an
entry for the decoding table that implements them in the single-cycle
architecture. (If you want to add the instructions to the simulator, you
can use the opcodes 24 and 25 that are so far unimplemented.)

(c) Leaving aside the issue of finding suitable encodings for the instruc-
tions, what other operations could be made conditional and imple-
mented with the existing single-cycle datapath? What operations could
not be made conditional without changing the datapath, and why?

5 Native ARM code provides an addressing mode where the values of two
registers are added to form the address, but the value of one of the registers
is first shifted left. For example, the instruction

ldr r0, [r2, r3, LSL #2]

loads r0 with the 4-byte value stored at address r2 + r3*4. Native code may
shift the register by any amount, multiplying by any power of two, but we
consider here only scaling by 4 as shown.

(a) Explain why this addressing mode is particularly useful in programs
that contain a lot of array indexing.

(b) Write decoding rules for versions of the ldr and str instructions that
implement this addressing mode. (If you want to add them to the sim-
ulator, you could use opcodes 14 and 15.)


