
Digital Systems: More sample
exam questions (with answers)

Mike Spivey, Trinity Term, 2020

1 Some ‘friends’ of yours are starting an indoor gardening project, and you
have agreed to build a soil temperature monitor for them in return for a share
of the produce. The hardware design is complete, with temperature sensors
connected to an analogue-to-digital converter (ADC) in your chosen micro-
controller. After configuration, the ADC is started by setting a device regis-
ter ADC_START to 1. Some time later, the ADC sets event register ADC_DONE
to 1 and causes an interrupt that calls the handler function adc_handler.
The reading is then available in device register ADC_DATA. After ADC_DONE
is cleared, the device will not request another interrupt before it is started
again. The ADC has eight channels, selected by assigning an integer from
0 to 7 to the device register ADC_CHANNEL; this must done before starting
the ADC.

(a) In the existing design, there is one temperature sensor connected to
channel 0 of the ADC, and the control software is single-threaded. Des-
ign an interrupt-controlled driver for the ADC, providing a function

int adc_reading(void)

that takes a reading and returns its value. [8 marks]

(b) Following the success of the first growing season, your friends decide to
expand the project, and now need a temperature monitor that supports
multiple sensors. You decide to connect the sensors to different chan-
nels of the same ADC, and to use a message-based process scheduler to
organise the software, including multiple processes that each monitor
the temperature of a different sensor. Design a driver process for the
ADC, providing a function

int adc_reading(int channel)

the may safely be called by other processes to read the temperature on a
specified channel, ensuring that one reading is finished before another
one starts. [12 marks]

2 Figure 1 shows part of the circuit diagram for a CMOS gate with com-
plementary pull-up and pull-down networks that computes output z from
inputs a, b, c, d.

Copyright © 2019–20 J. M. Spivey 1

2 Digital Systems: More sample exam questions (with answers)

P Q

a

b

c

d

z

Vdd

Vss

For you to
complete

Figure 1: Circuit diagram for Question 2

(a) Complete the circuit diagram. [3 marks]

(b) Determine the Boolean function that is computed by the gate.
[3 marks]

(c) Another CMOS gate has the same pull-down network as in Figure 1,
except that the points labelled P and Q are connected to each other.
What corresponding change is needed in the rest of the circuit?

[2 marks]

(d) Determine the Boolean function that is computed by the second circuit,
and find values for the inputs that lead the two circuits to produce
different outputs. [3 marks]

(e) Design a fully synchronous sequential circuit that monitors a single
input a and has a single output z. If a has been high at two or more
successive clock edges and is low at the next clock edge, then the circuit
should immediately produce an output pulse for one clock cycle, and it
should repeat this behaviour indefinitely. [9 marks]

3 This question concerns implementations of the instruction set of a little-
endian RISC-like machine. There are loads and stores with addressing modes
where the address is computed either as the sum of two registers, or as the
sum of a register and a small constant.

• The instructions ldr and str permit loads and stores where a 32-bit
value is transferred between a register and memory.

• The instructions ldrb and strb load and store an 8-bit value in the least
significant bits of a 32-bit register, with zero extension for the load.

Digital Systems: More sample exam questions (with answers) 3

For ldr and str, the effective address must be a multiple of 4, but ldrb and
strb allow any address to be used.

The instruction set is implemented on a datapath that executes each in-
struction in a single cycle, and has separate memory interfaces for instruc-
tions and data.

(a) Give examples of constructs in a high-level language that can take ad-
vantage of the two addressing modes. [2 marks]

(b) Draw in outline and explain the design of a datapath that can implement
32-bit loads and stores using these addressing modes, stating what role
is played by each functional unit in executing the instructions.

[5 marks]

(c) If the ldrb instruction were not implemented, could the instructions

ldrb r0, [r1, #5]

and

strb r0, [r1, #5]

be replaced by an equivalent sequence of instructions that does not
use ldrb or strb but only the ldr and str instructions? Assume that
plenty of spare registers are available, and that the equivalent sequence
may have a different effect on the condition codes. Either show a suit-
able sequence of instructions, or explain why one does not exist.

[6 marks]

(d) A datapath that supports 8-bit loads might use an unchanged interface
to data memory, fetch a whole word, but select the appropriate byte
to write to a register. Describe a suitable functional unit that might be
added to the datapath for this purpose, explaining what control signals
it would use and showing how the unit might be constructed from logic
gates. [5 marks]

(e) Could an additional modification also support 8-bit stores with the same
memory interface, executing each store in a single cycle? Justify your
answer. [2 marks]

4 [2010/4] A certain microprocessor has a 32-bit datapath and uses both
unsigned binary and twos-complement signed representations of numbers.
There are instructions add and sub that add and subtract the contents of
two registers, storing the results in a third register. There also a comparison
instruction that subtracts two registers and sets the four flags NZCV from the
result, and instructions blt and blo that branch if the flags indicate that the
first register is less than the second in value. The blt instruction interprets
its inputs as twos-complement signed numbers, and blo interprets them as
unsigned numbers.

(a) Define two functions that map sequences of 32 bits to the integers they
represent in the twos-complement and in the unsigned representation.

[2 marks]

(b) Specify precisely the function of an adder that adds two 32-bit unsigned
numbers to obtain a 32-bit result, and show that the same adder can be
used with twos-complement numbers. [4 marks]

4 Digital Systems: More sample exam questions (with answers)

(c) Show how to combine a 32-bit adder with appropriate additional logic
to make a circuit that performs 32-bit subtraction. [4 marks]

(d) Give an example to show that the blt and blo instructions can give
different results. [4 marks]

(e) Give an example to show that the blt instruction cannot simply use
the sign bit that results from a 32-bit subtraction. Describe appropriate
logic to compute the result, and show that it is correct. [4 marks]

(f) Design logic to give the correct result for the blo instruction, and show
that it is correct. [2 marks]

5 [2016/3] Consider the following definition of a function foo:

int foo(int y) {
if (y < 3)

return 1;
else

return bar(y-2) + bar(y-3);
}

Below is an incomplete compilation of the function foo into Thumb code.

foo:
push {r4, r5, lr}
movs r4, r0
cmp r4, #3
<missing instruction 1>
subs r0, r4, #2
bl bar
movs r5, r0
<missing instruction 2>
bl bar
<missing instruction 3>
b foo_end

foo_ret1:
movs r0, #1

foo_end:
pop {r4, r5, pc}

(a) Outline the calling convention that is exemplified in this code.
[4 marks]

(b) Briefly explain the purpose of the first and last instructions in the func-
tion, and why the lists of registers are as they appear. [4 marks]

(c) Supply the three instructions that are missing in the code above.
[4 marks]

Now consider the definition of the function bar. Below is its compilation
into Thumb code.

bar:
push {r4, lr}
movs r4, r0

Digital Systems: More sample exam questions (with answers) 5

cmp r4, #2
blt bar_ret1
adds r0, r4, #1
bl foo
subs r0, r4, r0
b bar_end

bar_ret1:
movs r0, #1

bar_end:
pop {r4, pc}

(d) Supply suitable code for the two blanks in the following high-level code
for bar.

int bar(int x) {
if (<blank 1>)

return 1;
else {

<blank 2>
}

}

[4 marks]

(e) Write a ‘test program’ in Thumb code that calls foo(x) successively
for all values of x from 1 to 10, and calls print(y) with the value y
returned by each call of foo. [4 marks]

Model answers

1 (a) There is only one thread, so concurrent calls to adc_reading are impossible.

volatile adc_active = 1;

int adc_reading(void) {
ADC_CHANNEL = 0;
adc_active = 1;
ADC_START = 1;
while (adc_active) pause();
return ADC_DATA;

}

void adc_handler(void) {
if (ADC_DONE) {

ADC_DONE = 0;
adc_active = 0;

}
}

Here, pause() halts the processor until the next interrupt. The variable adc_
active must be declared volatile to prevent compiler optimisations from
concluding that its value will not change asynchronously.

The code follows the common pattern of checking the reason for the interrupt
(ADC_DONE) in the handler, though in this case there is only one known reason
for an interrupt.

6 Digital Systems: More sample exam questions (with answers)

(b) Now we use a server process, with selective receive – receive(HARDWARE, &m)
– to ensure a fresh request is not accepted before the previous request is com-
plete.

void adc_driver(int arg) {
message m;
int client, data;

// Initialise the ADC

// Set up the ADC interrupt
connect(ADC_IRQ);

while (1) {
receive(any, &m);

switch (m.m_type) {
case READING:

client = m.m_sender;
ADC_CHANNEL = m.m_i1;
ADC_START = 1;
receive(HARDWARE, &m);
assert(m.m_type == INTERRUPT);
assert(ADC_DONE);
ADC_DONE = 0;
data = ADC_DATA;

m.m_type = DATA;
m.m_i1 = data;
send(client, $m);
break;

case INTERRUPT:
panic("Unexpected interrupt");
break;

default:
panic("ADC got bad message");

}
}

}

The function adc_reading constructs and sends a message.

int adc_reading(int channel) {
message m;
m.m_type = READING;
m.m_i1 = channel;
sendrec(ADC, &m);
assert(m.m_type == DATA);
return m.m_i1;

}

2 (a) See Figure 2.

(b) The pull-down network drives the output low if either a and b or c and d are
high, so the function is

z = ¬((a ∧ b) ∨ (c ∧ d)).

(c) Referring to Figure 2, the connection between R and S must be broken to main-
tain complementarity.

Digital Systems: More sample exam questions (with answers) 7

Figure 2: Completed circuit for Question 2

(d) Now the function computed is

w = ¬((a ∨ c) ∧ (b ∨ d)).

The functions differ if abcd = 1001 or 0110, when z = 1 but w = 0.

(e) The output can be derived from observations of the input at the most recent
three clock edges, which must follow the pattern 110 for the output to be high.
A solution is therefore a shift register with three stages u, v , w with the wiring
u′ = a, v′ = u, w ′ = v and a 3-input and gate giving output z = ¬u ∧ v ∧ w .

Alternatively, we can design a FSM with four states: Q0 = idle, Q1 = count 1,
Q2 = count 2, Q3 = active, and the state transition diagram shown in Figure 3.
Sneakily observing that all 1-transitions lead to states Q1 or Q2, we encode the
states as Q0 = 00, Q1 = 01, Q2 = 11, Q3 = 10 to obtain the transition table,

u v a u′ v′

0 0 0 0 0
0 0 1 0 1
0 1 0 0 0
0 1 1 1 1
1 1 0 1 0
1 1 1 1 1
1 0 0 0 0
1 0 1 0 1.

We can read off v′ = a as expected, and also u′ = v ∧ (a ∨ u). The output is
given by z = u ∧ ¬v . So much grief to save one flip-flop!

The simple, perspicuous solution simulates the minimal one via the abstrac-
tion function f (uvw) given by

f (000) = f (001) = f (010) = Q0,

f (100) = f (101) = Q1,

f (110) = f (111) = Q2,

f (011) = Q3.

8 Digital Systems: More sample exam questions (with answers)

Figure 3: Flying spaghetti monster for Question 2

3 (a) The reg+reg addressing mode is useful for array indexing: if r1 contains the
base address of an array and r2 contains the offset of an element, then ldr
r0, [r1, r2] will load the element into register r0.

The reg+const addressing mode can be used to fetch fields from a record
whose address is in a register, with the fields at constant offsets. Additionally,
if the register if sp, the addressing mode gives access to local variables at fixed
offsets in the stack frame.

(b) See the datapath diagram from the course; answers should refer to the func-
tional units listed below, but need not mention the many muxes that feed them.

• One, two, or three register values are output by the register file.

• The offset is scaled if appropriate by the barrel shifter.

• The base address and offset are added by the ALU.

• The data memory performs a read or write cycle.

• If the instruction if ldr, the result is written back by the register file.

(c) For clarity, the following instruction sequences use more registers than are
really needed. For ldrb r0, [r1, #5], we first compute the effective address,
and split it into the word address (a multiple of 4), and the last two bits that
give the index of a byte within the word.

adds r2, r1, #5 @ Compute effective address
movs r3, r2
movs r4, #3 @ Mask for lower bits
bics r2, r4 @ Word address in r2
ands r3, r4 @ Byte index in r3
lsl r3, r3, #3 @ Multiply byte index by 8

Now we fetch the word, shift it to obtain the correct byte in the bottom 8 bits,
then zero out the remainder.

ldr r0, [r2] @ Fetch the word
lsr r0, r3 @ Shift desired byte to bottom
uxtb r0, r0 @ Zero out upper 24 bits.

For strb, we can start with the same address calculation, but then we must
fetch the whole word, modify the appropriate byte, and store it back.

ldr r5, [r2] @ Fetch the whole word

Digital Systems: More sample exam questions (with answers) 9

movs r4, #0xff @ Compute a mask for the unwanted bits
lsls r4, r4, r3
bics r5, r4 @ Clear out existing byte
uxtb r4, r0 @ Compute replacement byte
lsls r4, r4, r3
orrs r5, r4 @ Combine old and new values
str r5, [r2] @ Store back the word

(d) We need an additional barrel shifter connected to the output of the data memory
interface, capable of passing its input through unchanged, or shifting it by 0, 8,
16 or 24 bits, selecting the bottom byte, and extending with zeroes. The barrel
shifter can have three stages: the first shifting by 0 or 16 bits and producing a
16-bit output, the second shifting by 0 or 8 bits and producing an 8-bit output,
and the third selecting either the output of the second stage extended with 24
zeroes, or selecting the original input.

The control inputs to the first two stages come from the bottom two bits of
the effective address, which are not used by the word-oriented data memory.
The control input of the last stage is derived from the opcode of the instruction,
and is active only for the ldrb instruction. Each stage is a row of 1-bit, 2-input
multiplexers, and can be built from an OR gate, two AND gates and an inverter.

memout’ = mux_32(cByteLoad, mem2 ++ 0_24, memout)

mem2 = mux_8(aluout[0], mem1[15:8], mem1[7:0])

mem1 = mux_16(aluout[1], memout[31:16], memout[15:0])

(e) As the assembly-language equivalent reveals, an 8-bit store would require a
read–modify–write operation on the memory, and the needed read and write
could not happen in the same cycle.

4 (a) For the unsigned representation we use bin : B32 → [0, 232) with bin(a) =∑
0≤i<32 ai · 2i and for twos-complement twoc : B32 → [−231, 231) with twoc(a) =∑
0≤i<31 ai · 2i − a31 · 231 or in terms of bin(a): twoc(a) = bin(a) − a31 · 232

(b) As we are only specifying a 32-bit result, it will only be correct modulo 232

(possible overflow). bin(s0, . . . , sn−1) ≡ bin(a0, . . . , an−1) + bin(b0, . . . , bn−1)
(mod 232) Because of

twoc(a) = bin(a) − a31 · 232,

we have

twoc(a) ≡ bin(a) (mod 232).

Therefore, if

bin(s) ≡ bin(a) + bin(b) (mod 232),

then also

twoc(s) ≡ bin(s) (mod 232)

≡ bin(a) + bin(b) (mod 232)

≡ twoc(a) + twoc(b) (mod 232)

Hence a 32-bit adder that gives the correct result (mod 232) for unsigned oper-
ands will also give the correct result for signed operands in two’s complement
representation.

(c) −twoc(b) = twoc(b + 1), hence inverting all bits of b and setting the carry-in
to 1 will perform subtraction instead of addition, twoc(s) ≡ twoc(a) − twoc(b)

10 Digital Systems: More sample exam questions (with answers)

(mod 232). By using an additional control signal 〈sub〉 and 32 xor-gates in front
of the second input to the adder, we can use the same adder for addition and
subtraction.

(d) Let a = 000 · · · 0 and b = 1111 · · · 1 then blo will branch while blt will not,
because twoc(b) = −1.

(e) Any example that produces an “overflow” when performing the subtraction, eg.
a = 0111 · · · 1 and b = 1000 · · · 0 then the result d of the subtraction will be
d = 111 · · · 1. Hence the sign bit would give 1 but twoc(a) > twoc(b).

Overflow can only happen if a and b have different sign bits, and is detected
when the sign of d does not agree with the sign of a. Let as , bs and N = ds be
the sign bits of a, b and d respectively, and let V = (as ≡ bs) ∧ (ds 6≡ as). Then
the correct result is given by N 6≡ V .

(f) Let C be the carry-out from the subtraction: it indicates whether bin(a) + (232 −
bin(b)) ≥ 232 or equivalently whether bin(a) − bin(b) ≥ 0. The correct result is
to branch if ¬C.

5 (a) Arguments are passed in r0–r3, with the first argument (the only one in this
case) in r0. The subroutine may trash these registers, and it returns its result
in r0. Registers r4–r7 must be preserved by a subroutine, so must be saved
and restored if the subroutine overwrites them. The call instruction saves the
return address in lr, and the subroutine returns by branching to this address.
The subroutine may use stack space for local storage, but must restore the stack
pointer to the value it had at the call.

(b) Here’s the code again, but with the missing instuctions added, enclosed in
<...>.

foo:
push {r4, r5, lr}
movs r4, r0
cmp r4, #3
<blt foo_ret1>
subs r0, r4, #2
bl bar
movs r5, r0
<subs r0, r4, #3>
bl bar
<adds r0, r5, r0>
b foo_end

foo_ret1:
movs r0, #1

foo_end:
pop {r4, r5, pc}

(c) The same trick, with the missing parts shown in <...>.

int bar(int x) {
if (<x < 2>)

return 1;
else {

<return x - foo(x+1);>
}

}

(d) Here’s possible C code for the test program:

void test(void) {

Digital Systems: More sample exam questions (with answers) 11

for (int n = 1; n <= 10; n++)
print(foo(n));

}

Translation into Thumb code:

test:
push {r4, lr}
mov r4, #1

test_loop:
cmp r4, #10
bgt test_done
movs r0, r4
bl foo
bl print
adds r4, r4, #1
b test_loop

test_done:
pop {r4, pc}

