
Copyright © 2020–22 J. M. Spivey

Department of
COMPUTER
SCIENCE

Mike Spivey
Hilary Term 2022

Introducing micro:bian

Department of
COMPUTER SCIENCE

Michael Spivey

In this part

• Concurrent processes and messages between
them as a way of structuring complex systems
that respond to events (L12).

• Managing I/O devices with driver processes
that receive interrupts as messages (L13).

• Implementing multiple processes (L14).

• Messages and scheduling (L15).

• Chasing down a bug (L16).

2

Department of
COMPUTER SCIENCE

Michael Spivey

Why concurrency?

• Genuinely parallel machines

• Sharing one machine between several tasks

• Decomposing one task clearly

• Responding to several sources of events

3

Department of
COMPUTER SCIENCE

Michael Spivey

In this lecture

• Processes: embedded programs are
conveniently structured as a set of
independent processes.

• Messages: processes can cooperate by
exchanging messages in a way that
synchronises their behaviour.

• Shared variables are best avoided by using
messages instead.

4

Department of
COMPUTER SCIENCE

Michael Spivey

Hearts again

static int row = 0;

void advance(void) {
 row++;
 if (row == 3) row = 0;
 GPIO_OUT = heart[row];
}

• Efficient but inflexible.

• Can’t pause inside subroutines or control
structures.

5

Department of
COMPUTER SCIENCE

Michael Spivey

But also primes

Use interrupts to overlap printing with the search,
but ...

• When the serial buffer is full, wastes time
waiting in a loop.

• Disables interrupts to protect the buffer from
concurrent modification – hard to get right.

We’re ready for to use an operating system:
enter micro:bian!

6

Department of
COMPUTER SCIENCE

Michael Spivey

Better: a process

static void heart_task(int arg) {
 while (1) {
 show(heart, 70);
 show(small, 10);
 show(heart, 10);
 show(small, 10);
 }
}

7

static void show(int img[], int n) {
 while (n-- > 0) {
 for (int p = 0; p < 3; p++) {
 GPIO_OUT = img[p];
 timer_delay(5);
 }
 }
}

Department of
COMPUTER SCIENCE

Michael Spivey

Another, independent process

static void prime_task(int arg) {
 int p = 2, n = 0;

 while (1) {
 if (prime(p)) {
 n++;
 printf("prime(%d) = %d\n", n, p);
 }
 p++;
 }
}

8

serial_putc(c);

Department of
COMPUTER SCIENCE

Michael Spivey

Setting the ball rolling
void init(void) {
 start(SERIAL, "Serial", serial_task, 0, STACK);
 start(TIMER, "Timer", timer_task, 0, STACK);
 start(HEART, "Heart", heart_task, 0, STACK);
 start(PRIME, "Prime", prime_task, 0, STACK);
}

• a fixed collection of processes created before
concurrent execution begins.

• our two processes, plus device drivers for the
timer (timer_delay) and serial port
(serial_putc).

9

Department of
COMPUTER SCIENCE

Michael Spivey

Processes

Each a ‘main program’ in its own right

• It can call subroutines.

• It can pause (or be interrupted) at any point to
give others a go.

Implementation

• Processes are interleaved.

• Each has its own stack.

micro:bian supports a fixed set of processes.

10

Department of
COMPUTER SCIENCE

Michael Spivey

Other operating systems

• Processes with communication

• Memory management

• Drivers for I/O devices

• File system

• Networking

micro:bian supports processes and messages,
and whatever device drivers we write.

No utility programs, shared libraries, GUI, ... either.

11

Department of
COMPUTER SCIENCE

Michael Spivey

Sending messages

void prime_task(int arg) {
 int n = 2;
 message m;

 while (1) {
 if (prime(n)) {
 m.int1 = n;
 send(USEPRIME, PRIME, &m);
 }
 n++;
 }
}

12

Department of
COMPUTER SCIENCE

Michael Spivey

Receiving messages

void summary_task(int arg) {
 int count = 0, limit = arg; message m;

 while (1) {
 receive(PRIME, &m);
 while (m.int1 >= limit) {
 report(count, limit);
 limit += arg;
 }
 count++;
 }
}

13

Department of
COMPUTER SCIENCE

Michael Spivey

Rules for messages

Both sender and receiver have a message buffer
(16 bytes).

• The sender assembles a message; then

• It is transferred from sender to receiver as an
atomic action.

• No buffering, no queues of messages!

14

Department of
COMPUTER SCIENCE

Michael Spivey

Alternatives to messages

Message passing:

• no “shared variables” between processes.

• all communication by messages

Shared variables with semaphores:

• like the serial output buffer.

• more efficient, but hard to get right.

15

Copyright © 2020–22 J. M. Spivey

Department of
COMPUTER
SCIENCE

Mike Spivey
Hilary Term 2022

Device drivers

Department of
COMPUTER SCIENCE

Michael Spivey

In this lecture

• Interrupts can be tamed by turning them into
‘messages from the hardware’.

• Device drivers look after hardware devices by
serving requests one at a time in a loop.

(See wiki and Lab 4 for all details – many are
omitted here for clarity.)

17

Department of
COMPUTER SCIENCE

Michael Spivey

Implementing serial output

void serial_putc(char ch) {
 message m;
 m.int1 = ch;
 send(SERIAL, PUTC, &m);
}

• request message sent to the SERIAL driver.

• the caller waits if the driver is not ready.

18

Department of
COMPUTER SCIENCE

Michael Spivey

Implementing the driver process
void serial_task(int arg) {
 static char txbuf[NBUF];
 int bufin, bufout, bufcount;
 message m; char ch;

 serial_setup();

 while (1) {
 receive(ANY, &m);
 switch (m.m_type) {
 ...
 }
 }
}

19

State is
local to the

driver

A server
loop accepts

requests

Department of
COMPUTER SCIENCE

Michael Spivey

Handling PUTC messages
while (1) {
 receive(ANY, &m);
 switch (m.m_type) {
 case PUTC:
 ch = m.int1;
 txbuf[bufin] = ch; ...
 break;

 ...
 }
}

• Buffer variables are local, so no other process
can interfere.

20

Department of
COMPUTER SCIENCE

Michael Spivey

Handling interrupts

Key insight:

 an interrupt is a message from the hardware.

while (1) {
 receive(ANY, &m);
 switch (m.m_type) {
 case INTERRUPT:
 if (UART_TXDRDY) {
 txidle = 1;
 UART_TXDRDY = 0;
 }
 break;

 ...

21

Department of
COMPUTER SCIENCE

Michael Spivey

Responding to events
while (1) {
 receive(ANY, &m);
 switch (m.m_type) {
 ...
 }

 if (txidle && bufcount > 0) {
 UART.TXD = txbuf[bufout]; ...
 txidle = 0;
 }
}

22

Department of
COMPUTER SCIENCE

Michael Spivey

When the buffer is full

Let’s replace

 receive(ANY, &m);

with

 if (bufcount < NBUF)
 receive(ANY, &m);
 else
 receive(INTERRUPT, &m);

When the buffer is full, we just stop accepting
requests until it has emptied a bit.

23

