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In this part

» Concurrent processes and messages between
them as a way of structuring complex systems
that respond to events (L12).

* Managing I/0O devices with driver processes
that receive interrupts as messages (L13).

« Implementing multiple processes (L14).
« Messages and scheduling (L15).
* Chasing down a bug (L16).
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Why concurrency?

* Genuinely parallel machines
» Sharing one machine between several tasks
* Decomposing one task clearly

* Responding to several sources of events
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In this lecture

* Processes: embedded programs are
conveniently structured as a set of
independent processes.

* Messages: processes can cooperate by
exchanging messages in a way that
synchronises their behaviour.

» Shared variables are best avoided by using
messages instead.
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Hearts again

static int row = O;

void advance(void) {
row++:
if (row == 3) row = 0;
GPIO_OUT = heart|[row]:

« Efficient but inflexible.

» (Can't pause inside subroutines or control
structures.
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But also primes

Use interrupts to overlap printing with the search,
but ...

 When the serial buffer is full, wastes time
waiting in a loop.

» Disables interrupts to protect the buffer from
concurrent modification — hard to get right.

We're ready for to use an operating system:
enter micro:bian!
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Better: a process

static void heart_task(int arg) {
while (1) {
show(heart, 70);

show(small, 10);
chow(heart 10) -

static void show(int img[], int n) {
) while (n-- > 0) {

} for (int p = 8; p < 3; p++) {
GPIO_OUT = imgl[p];
timer_delay(5);

}
}
)
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Another, independent process
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static void prime_task(int arg) A
int p =2, n = 0;

while (1) |
if (prime(p)) {
n++:
printf("prime(%d) = %d\n", n, p);

}

p++;
} e T —
} (. serial_putc(c);
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Setting the ball rolling

void init(void) {
start(SERIAL, "Serial", serial_task, 0, STACK);
start(TIMER, "Timer", timer_task, 0, STACK);
start(HEART, "Heart", heart_task, 0, STACK);
start(PRIME, "Prime", prime_task, 0, STACK);

 a fixed collection of processes created before
concurrent execution begins.

* ourtwo processes, plus device drivers for the
timer (timer_delay) and serial port
(serial_putc).
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Processes

Each a ‘main program’ in its own right
* |t can call subroutines.

* It can pause (or be interrupted) at any point to
give others a go.

Implementation
* Processes are interleaved.

« Each has its own stack.

micro:bian supports a fixed set of processes.
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Other operating systems

* Processes with communication
 Memory management

* Drivers for I/0 devices

* File system

* Networking

micro:bian supports processes and messages,
and whatever device drivers we write.

No utility programs, shared libraries, GUI, ... either.
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Sending messages

void prime_task(int arg) {
int n = 2;
message m;

while (1) {
if (prime(n)) {
m.int1l = n;
Send(USEPRIME PRIME, &m);

n++;
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Recelving messages

void summary_task(int arg) {
int count = 0, limit = arg; message m,;

while (1) A
receive(PRIME, &m);
while (m.int1 >= limit)
report(count, limit);
limit += arg;
}

count++:
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Rules for messages

Both sender and receiver have a message buffer
(16 bytes).

* The sender assembles a message; then

* |tistransferred from sender to receiver as an
atomic action.

* No buffering, no queues of messages!
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Alternatives to messages

Message passing:
* no “shared variables” between processes.
» all communication by messages

Shared variables with semaphores:
* like the serial output buffer.

» more efficient, but hard to get right.
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Device drivers

Mike Spivey
Hilary Term 2022

5] Department of
el COMPUTER

UNIVERSITY OF

e i) OCIENCE

Copyright © 2020-22 J. M. Spivey



In this lecture

* Interrupts can be tamed by turning them into
‘messages from the hardware'.

» Device drivers look after hardware devices by
serving requests one at a time in a loop.

(See wiki and Lab 4 for all details — many are
omitted here for clarity.)
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Implementing serial output

void serial_putc(char ch) {
message m;
m.int1 = ch;
send(SERIAL, PUTC, &m);

* request message sent to the SERTAL driver.

 the caller waits if the driver is not ready.
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Implementing the driver process
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void serial_task(int arg) {
static char txbuf[NBUF];wmmmM%j”

i ' ) State Is
it oufin, bufout, PUTEOUNT: | jocal to the
| ' _ driver
serial_setup();
while (1) {—— P .
receive(ANY, &m); | A server
switch (m.m_type) { OOp accepts
_ requests
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Handling PUTC messages

while (1) A
receive(ANY, &m);
switch (m.m_type) A

case PUITC:
ch = m.int1;
txbuf[bufin] =
break:

h

* Buffer variables are local, so no other process
can interfere.
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Handling interrupts

Key insight:
an interrupt is a message from the hardware.

while (1) A
receive(ANY, &m);
switch (m.m_type)
case INTERRUPT:
if (UART_TXDRDY) {
txidle = 1;
UART_TXDRDY = 0;
;

break;
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Responding to events
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while (1) A
receive (ANY, &m)
switch (m.m_type

}

if (txidle && bufcount > 0) {
UART.TXD = txbuf[bufout];
txidle = ©;

) {

) Michael Spive
) UNIVERSITY OF Department O]c bivey

= OO QLI IDE \\PUTER SCIENCE 22



When the buffer i1s full

Let’s replace
receive(ANY, &m);
with

if (bufcount < NBUF)
receive(ANY, &m);

else
receive (INTERRUPT, &m);

When the buffer is full, we just stop accepting
requests until it has emptied a bit.
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