Introducing micro:bian

Mike Spivey
Hilary Term 2022

5] Department of
el COMPUTER

UNIVERSITY OF

e i) OCIENCE

Copyright © 2020-22 J. M. Spivey



In this part

» Concurrent processes and messages between
them as a way of structuring complex systems
that respond to events (L12).

* Managing I/0O devices with driver processes
that receive interrupts as messages (L13).

« Implementing multiple processes (L14).
« Messages and scheduling (L15).
* Chasing down a bug (L16).

Fes) UNIVERSITY OF Department of Michael Spivey

S AUIYINE COMPUTER SCIENCE ?



Why concurrency?

* Genuinely parallel machines
» Sharing one machine between several tasks
* Decomposing one task clearly

* Responding to several sources of events

Fe UNIVERSITY OF Department of Michael Spivey
BSOS COMPUTER SCIENCE 3



In this lecture

* Processes: embedded programs are
conveniently structured as a set of
independent processes.

* Messages: processes can cooperate by
exchanging messages in a way that
synchronises their behaviour.

» Shared variables are best avoided by using
messages instead.

WIS Department of Michael Spivey
MO QACINDE ~)\\PUTER SCIENCE 4



Hearts again

static int row = O;

void advance(void) {
row++:
if (row == 3) row = 0;
GPIO_OUT = heart|[row]:

« Efficient but inflexible.

» (Can't pause inside subroutines or control
structures.

Fe UNIVERSITY OF Department of Michael Spivey
BSOS COMPUTER SCIENCE 5



But also primes

Use interrupts to overlap printing with the search,
but ...

 When the serial buffer is full, wastes time
waiting in a loop.

» Disables interrupts to protect the buffer from
concurrent modification — hard to get right.

We're ready for to use an operating system:
enter micro:bian!

G UNIVERSITY OF Department of Michael Spivey
AN COMPUTER SCIENCE 6



Better: a process

static void heart_task(int arg) {
while (1) {
show(heart, 70);

show(small, 10);
chow(heart 10) -

static void show(int img[], int n) {
) while (n-- > 0) {

} for (int p = 8; p < 3; p++) {
GPIO_OUT = imgl[p];
timer_delay(5);

}
}
)
- UNIVERSITY OF Department of Michael Spivey

=0 QAOINDE ~O\\PUTER SCIENCE

7/



Another, independent process

=z A I A R o oo

static void prime_task(int arg) A
int p =2, n = 0;

while (1) |
if (prime(p)) {
n++:
printf("prime(%d) = %d\n", n, p);

}

p++;
} e T —
} (. serial_putc(c);

) Michael Spive
éﬁﬂl UNIVERSITY OF Department O]c bivey

=g @) CAOINDR (\\PUTER SCIENCE 8



Setting the ball rolling

void init(void) {
start(SERIAL, "Serial", serial_task, 0, STACK);
start(TIMER, "Timer", timer_task, 0, STACK);
start(HEART, "Heart", heart_task, 0, STACK);
start(PRIME, "Prime", prime_task, 0, STACK);

 a fixed collection of processes created before
concurrent execution begins.

* ourtwo processes, plus device drivers for the
timer (timer_delay) and serial port
(serial_putc).

FLE UNIVERSITY OF Department of Michael Spivey
BSOS COMPUTER SCIENCE 9



Processes

Each a ‘main program’ in its own right
* |t can call subroutines.

* It can pause (or be interrupted) at any point to
give others a go.

Implementation
* Processes are interleaved.

« Each has its own stack.

micro:bian supports a fixed set of processes.

NGNS Department of Michael Spivey
MO QACINDE ~)\\PUTER SCIENCE 10



Other operating systems

* Processes with communication
 Memory management

* Drivers for I/0 devices

* File system

* Networking

micro:bian supports processes and messages,
and whatever device drivers we write.

No utility programs, shared libraries, GUI, ... either.

Fe UNIVERSITY OF Department of Michael Spivey
BSOS COMPUTER SCIENCE T



Sending messages

void prime_task(int arg) {
int n = 2;
message m;

while (1) {
if (prime(n)) {
m.int1l = n;
Send(USEPRIME PRIME, &m);

n++;

UNIVERSITY OF Department of Michael Spivey
L AN COMPUTER SCIENCE "



Recelving messages

void summary_task(int arg) {
int count = 0, limit = arg; message m,;

while (1) A
receive(PRIME, &m);
while (m.int1 >= limit)
report(count, limit);
limit += arg;
}

count++:

Department of Michael Spivey
SN COMPUTER SCIENCE 3



Rules for messages

Both sender and receiver have a message buffer
(16 bytes).

* The sender assembles a message; then

* |tistransferred from sender to receiver as an
atomic action.

* No buffering, no queues of messages!

Fe UNIVERSITY OF Department of Michael Spivey
BSOS COMPUTER SCIENCE 14



Alternatives to messages

Message passing:
* no “shared variables” between processes.
» all communication by messages

Shared variables with semaphores:
* like the serial output buffer.

» more efficient, but hard to get right.

G UNIVERSITY OF Department of Michael Spivey
AN COMPUTER SCIENCE 5



Device drivers

Mike Spivey
Hilary Term 2022

5] Department of
el COMPUTER

UNIVERSITY OF

e i) OCIENCE

Copyright © 2020-22 J. M. Spivey



In this lecture

* Interrupts can be tamed by turning them into
‘messages from the hardware'.

» Device drivers look after hardware devices by
serving requests one at a time in a loop.

(See wiki and Lab 4 for all details — many are
omitted here for clarity.)

G UNIVERSITY OF Department of Michael Spivey
eI COMPUTER SCIENCE .



Implementing serial output

void serial_putc(char ch) {
message m;
m.int1 = ch;
send(SERIAL, PUTC, &m);

* request message sent to the SERTAL driver.

 the caller waits if the driver is not ready.

GasXy UNIVERSITY OF Department of Michael Spivey
AN COMPUTER SCIENCE 18



Implementing the driver process

i A oo

void serial_task(int arg) {
static char txbuf[NBUF];wmmmM%j”

i ' ) State Is
it oufin, bufout, PUTEOUNT: | jocal to the
| ' _ driver
serial_setup();
while (1) {—— P .
receive(ANY, &m); | A server
switch (m.m_type) { OOp accepts
_ requests

GER) UNIVERSITY OF Department of Michael Spivey

=A@ QUOINDE —()\\PUTER SCIENCE 19



Handling PUTC messages

while (1) A
receive(ANY, &m);
switch (m.m_type) A

case PUITC:
ch = m.int1;
txbuf[bufin] =
break:

h

* Buffer variables are local, so no other process
can interfere.

ﬁ UNIVERSITY OF Department of Michael Spivey

== 0) QUOINDE ~\\PUTER SCIENCE 20



Handling interrupts

Key insight:
an interrupt is a message from the hardware.

while (1) A
receive(ANY, &m);
switch (m.m_type)
case INTERRUPT:
if (UART_TXDRDY) {
txidle = 1;
UART_TXDRDY = 0;
;

break;

UNIVERSITY OF Department of Michael Spivey
L AN COMPUTER SCIENCE o1



Responding to events

=z A I A R o oo

while (1) A
receive (ANY, &m)
switch (m.m_type

}

if (txidle && bufcount > 0) {
UART.TXD = txbuf[bufout];
txidle = ©;

) {

) Michael Spive
) UNIVERSITY OF Department O]c bivey

= OO QLI IDE \\PUTER SCIENCE 22



When the buffer i1s full

Let’s replace
receive(ANY, &m);
with

if (bufcount < NBUF)
receive(ANY, &m);

else
receive (INTERRUPT, &m);

When the buffer is full, we just stop accepting
requests until it has emptied a bit.

- UNIVERSITY OF Department of Michael Spivey
L ASAYN COMPUTER SCIENCE ’3



