
Copyright © 2020–22 J. M. Spivey

Department of
COMPUTER
SCIENCE

Mike Spivey
Hilary Term 2022

Introducing micro:bian

Department of
COMPUTER SCIENCE

Michael Spivey

In this part

• Concurrent processes and messages between
them as a way of structuring complex systems
that respond to events (L12).

• Managing I/O devices with driver processes
that receive interrupts as messages (L13).

• Implementing multiple processes (L14).

• Messages and scheduling (L15).

• Chasing down a bug (L16).

2

Department of
COMPUTER SCIENCE

Michael Spivey

Why concurrency?

• Genuinely parallel machines

• Sharing one machine between several tasks

• Decomposing one task clearly

• Responding to several sources of events

3

Department of
COMPUTER SCIENCE

Michael Spivey

In this lecture

• Processes: embedded programs are
conveniently structured as a set of
independent processes.

• Messages: processes can cooperate by
exchanging messages in a way that
synchronises their behaviour.

• Shared variables are best avoided by using
messages instead.

4

Department of
COMPUTER SCIENCE

Michael Spivey

Hearts again

static int row = 0;

void advance(void) {
 row++;
 if (row == 3) row = 0;
 GPIO_OUT = heart[row];
}

• Efficient but inflexible.

• Can’t pause inside subroutines or control
structures.

5

Department of
COMPUTER SCIENCE

Michael Spivey

But also primes

Use interrupts to overlap printing with the search,
but ...

• When the serial buffer is full, wastes time
waiting in a loop.

• Disables interrupts to protect the buffer from
concurrent modification – hard to get right.

We’re ready for to use an operating system:
enter micro:bian!

6

Department of
COMPUTER SCIENCE

Michael Spivey

Better: a process

static void heart_task(int arg) {
 while (1) {
 show(heart, 70);
 show(small, 10);
 show(heart, 10);
 show(small, 10);
 }
}

7

static void show(int img[], int n) {
 while (n-- > 0) {
 for (int p = 0; p < 3; p++) {
 GPIO_OUT = img[p];
 timer_delay(5);
 }
 }
}

Department of
COMPUTER SCIENCE

Michael Spivey

Another, independent process

static void prime_task(int arg) {
 int p = 2, n = 0;

 while (1) {
 if (prime(p)) {
 n++;
 printf("prime(%d) = %d\n", n, p);
 }
 p++;
 }
}

8

serial_putc(c);

Department of
COMPUTER SCIENCE

Michael Spivey

Setting the ball rolling
void init(void) {
 SERIAL = start("Serial", serial_task, 0, STACK);
 TIMER = start("Timer", timer_task, 0, STACK);
 HEART = start("Heart", heart_task, 0, STACK);
 PRIME = start("Prime", prime_task, 0, STACK);
}

• a fixed collection of processes created before
concurrent execution begins.

• our two processes, plus device drivers for the
timer (timer_delay) and serial port
(serial_putc); plus an idle task.

9

Department of
COMPUTER SCIENCE

Michael Spivey

Processes

Each a ‘main program’ in its own right

• It can call subroutines.

• It can pause (or be interrupted) at any point to
give others a go.

Implementation

• Processes are interleaved.

• Each has its own stack.

micro:bian supports a fixed set of processes.

10

Department of
COMPUTER SCIENCE

Michael Spivey

Other operating systems

• Processes with communication

• Memory management

• Drivers for I/O devices

• File system

• Networking

micro:bian supports processes and messages,
and whatever device drivers we write.

No utility programs, shared libraries, GUI, ... either.

11

Department of
COMPUTER SCIENCE

Michael Spivey

Sending messages

void prime_task(int arg) {
 int n = 2;
 message m;

 while (1) {
 if (prime(n)) {
 m.int1 = n;
 send(USEPRIME, PRIME, &m);
 }
 n++;
 }
}

12

Department of
COMPUTER SCIENCE

Michael Spivey

Receiving messages

void summary_task(int arg) {
 int count = 0, limit = arg; message m;

 while (1) {
 receive(PRIME, &m);
 while (m.int1 >= limit) {
 report(count, limit);
 limit += arg;
 }
 count++;
 }
}

13

Department of
COMPUTER SCIENCE

Michael Spivey

Rules for messages

Both sender and receiver have a message buffer
(16 bytes).

• The sender assembles a message; then

• It is transferred from sender to receiver as an
atomic action.

• No buffering, no queues of messages!

14

Department of
COMPUTER SCIENCE

Michael Spivey

Alternatives to messages

Message passing:

• no “shared variables” between processes.

• all communication by messages

Shared variables with semaphores:

• like the serial output buffer.

• more efficient, but hard to get right.

15

Copyright © 2020–22 J. M. Spivey

Department of
COMPUTER
SCIENCE

Mike Spivey
Hilary Term 2022

Device drivers

Department of
COMPUTER SCIENCE

Michael Spivey

In this lecture

• Interrupts can be tamed by turning them into
‘messages from the hardware’.

• Device drivers look after hardware devices by
serving requests one at a time in a loop.

(See wiki and Lab 4 for all details – many are
omitted here for clarity.)

17

Department of
COMPUTER SCIENCE

Michael Spivey

Implementing serial output

void serial_putc(char ch) {
 message m;
 m.int1 = ch;
 send(SERIAL, PUTC, &m);
}

• request message sent to the SERIAL driver.

• the caller waits if the driver is not ready.

18

Department of
COMPUTER SCIENCE

Michael Spivey

Implementing the driver process
void serial_task(int arg) {
 static char txbuf[NBUF];
 int bufin, bufout, bufcount;
 message m; char ch;

 serial_setup();

 while (1) {
 receive(ANY, &m);
 switch (m.m_type) {
 ...
 }
 }
}

19

State is
local to the

driver

A server
loop accepts

requests

Department of
COMPUTER SCIENCE

Michael Spivey

Setting things up

void serial_setup(void) {
 ...

 UART.INTENSET = BIT(UART_INT_TXDRDY);
 connect(UART_IRQ);
 enable_irq(UART_IRQ);
}

20

Department of
COMPUTER SCIENCE

Michael Spivey

Handling PUTC messages
while (1) {
 receive(ANY, &m);
 switch (m.m_type) {
 case PUTC:
 ch = m.int1;
 txbuf[bufin] = ch; ...
 break;

 ...
 }
}

• Buffer variables are local, so no other process
can interfere.

21

Department of
COMPUTER SCIENCE

Michael Spivey

Handling interrupts

Key insight:
 an interrupt is a message from the hardware.

 receive(ANY, &m);
 switch (m.m_type) {
 case INTERRUPT:
 if (UART_TXDRDY) {
 txidle = 1;
 UART_TXDRDY = 0;
 }
 clear_pending(UART_IRQ);
 enable_irq(UART_IRQ);
 break;

22

Department of
COMPUTER SCIENCE

Michael Spivey

Responding to events
while (1) {
 receive(ANY, &m);
 switch (m.m_type) {
 ...
 }

 if (txidle && bufcount > 0) {
 UART.TXD = txbuf[bufout]; ...
 txidle = 0;
 }
}

23

Department of
COMPUTER SCIENCE

Michael Spivey

When the buffer is full

Let’s replace

 receive(ANY, &m);

with

 if (bufcount < NBUF)
 receive(ANY, &m);
 else
 receive(INTERRUPT, &m);

When the buffer is full, we just stop accepting
requests until it has emptied a bit.

24

Department of
COMPUTER SCIENCE

Michael Spivey

Omitted here ...

Lab 4 has a more elaborate serial driver

• Supports both output and input with echoing
and line editing.

• All UART initialisation details are filled in.

• There’s an alternative interface print_buf
that overcomes the one-message-per-
character bottleneck.

25

Department of
COMPUTER SCIENCE

Michael Spivey

The standard interrupt handler

void default_handler(void) {
 int irq = active_irq();
 int task = os_handler[irq];
 disable_irq(irq);
 interrupt(task);
}

26

Copyright © 2020–22 J. M. Spivey

Department of
COMPUTER
SCIENCE

Mike Spivey
Hilary Term 2022

Implementing
Processes

Department of
COMPUTER SCIENCE

Michael Spivey

Concurrent processes

We want multiple processes, each with its own
stack. For simplicity,

• A fixed set of processes, created at the start.

• Each process has a fixed amount of stack
space.

28

Department of
COMPUTER SCIENCE

Michael Spivey

Implementing processes

The plan:

• Enter the OS via a software interrupt
instruction svc.

• Save the entire processor state on the stack

• After choosing a new process, restore its state
to continue.

Made easier by a separate stack for the operating
system.

29

Q

Department of
COMPUTER SCIENCE

Michael Spivey

Saved regs

psp

Increasing addresses

msp

Context switch – part 1

30

P

Saved state

SVC handler

Process stack A Main OS stack

2. The hardware saves
some state, switches to

the main stack, and
invokes the SVC handler

1. Function Q executes
an svc instruction

Q

Department of
COMPUTER SCIENCE

Michael Spivey

Saved regs

psp

Increasing addresses

msp

Context switch – part 2

31

P

Saved state

SVC handler

Process stack A Main OS stack

More saved
state

3. The SVC handler
saves more state

sys_call

4. Then the SVC handler
calls the operating

system kernel

Department of
COMPUTER SCIENCE

Michael Spivey

Increasing addresses
Context switch – part 3

32

Main OS stack

msp

SVC handler

sys_call

mini_send

deliver

5. The operating system
can call internal subroutines

Process stack BMain OS stack

Department of
COMPUTER SCIENCE

Michael Spivey

Increasing addresses
Context switch – part 4

33

psp

S

Saved regsR

Saved state

More saved
state

msp

SVC handler

sys_call

6. The OS selects a new
process and passes its
sp to the SVC handler

Department of
COMPUTER SCIENCE

Michael Spivey

Increasing addresses
Context switch – part 5

34

psp

S

Saved regsR

Saved state

msp
SVC handler

8. The SVC handler
restores some state.

Process stack BMain OS stack

Department of
COMPUTER SCIENCE

Michael Spivey

Increasing addresses
Context switch – part 5

35

psp
S

Saved regsR
msp

9. The interrupt return
mechanism resumes

process B

Process stack BMain OS stack

Department of
COMPUTER SCIENCE

Michael Spivey

Implementing the SVC handler

36

svc_handler:
 push {lr}
 bl isave @ Complete saving of state
 @@ Argument in r0 is sp of old process
 bl system_call @ Perform system call
 @@ Result in r0 is sp of new process
 bl irestore @ Restore manually saved
state
 pop {pc}

Department of
COMPUTER SCIENCE

Michael Spivey

Saving state

37

@@@ isave -- save context for system call

 .macro isave

 mrs r0, psp @ Get thread stack pointer

 subs r0, #36

 movs r1, r0

 mov r3, lr @ Preserve magic value
0xfffffffd

 stm r1!, {r3-r7} @ Save low regs on thread

Department of
COMPUTER SCIENCE

Michael Spivey

Implementing system calls

38

/* system_call -- entry from system call traps */

unsigned *system_call(unsigned *psp)

{

 short *pc = (short *) psp[PC_SAVE]; /* Program
counter */

 int op = pc[-1] & 0xff; /* Syscall number from
SVC instruction */

Department of
COMPUTER SCIENCE

Michael Spivey

Starting a process

39

The first time a process runs, it is resumed just as
if returning from a system call.

• Set up a fake exception frame so this invokes
the process body:

• pc = body
lr = exit
r0 = argument

B

A

H

Saved state

Q

P

Department of
COMPUTER SCIENCE

Michael Spivey

P

sp

Saved regs

P’s Local
storage

sp

Increasing addresses

sp

Interrupt handlers with subroutines

40

Q

P

Q

Saved state

H

Department of
COMPUTER SCIENCE

Michael Spivey

P

psp

Saved regs

P’s Local
storage

psp

Increasing addresses

msp

Context switch – part 1

41

Q

P

Q

Saved state

More saved
state

SVC handler

sys_call

subroutine

Process stack Main stack

Department of
COMPUTER SCIENCE

Michael Spivey

pc = H

lr = MAGIC

Saved regs

P’s Local
storage

sp

Saved regs

P’s Local
storage

sp

psr

pc in P

lr for P

r12

r0-r3

Increasing addresses

Saved regs

P’s Local
storage

sp

psr

pc in P

lr for P

r12

r0-r3

lr = MAGIC

r4-r7,
(r8-r11)pc in P

lr for P

Interrupt mechanism

42

Saved by
hardware

Saved by
handler

Copyright © 2020–22 J. M. Spivey

Department of
COMPUTER
SCIENCE

Mike Spivey
Hilary Term 2022

Scheduling and
Messages

I

AAA

AA

Department of
COMPUTER SCIENCE

Michael Spivey

Implementation: ready queues

44

0:

1:

2:

3:

A Active
I Idle process

Pr
io

rit
y

le
ve

ls

R S

S

SA S

R

S

Department of
COMPUTER SCIENCE

Michael Spivey

Sending queues

45

A Active
S Sending
R Receiving

Department of
COMPUTER SCIENCE

Michael Spivey

When nothing is happening

There is an IDLE process that runs this loop:

 while (1) pause();

In many embedded systems, the processor sits
here, asleep until an interrupt arrives.

Then there is a brief flurry of activity with
processes woken by messages, sending messages
that wake others. Then the system is idle again.

46

