
Copyright © 2020–22 J. M. Spivey

Department of
COMPUTER
SCIENCE

Mike Spivey
Hilary Term 2022

Introducing micro:bian

Department of
COMPUTER SCIENCE

Michael Spivey

In this part

• Concurrent processes and messages between
them as a way of structuring complex systems
that respond to events (L12).

• Managing I/O devices with driver processes
that receive interrupts as messages (L13).

• Implementing multiple processes (L14).

• Messages and scheduling (L15).

• Chasing down a bug (L16).

2

Department of
COMPUTER SCIENCE

Michael Spivey

Why concurrency?

• Genuinely parallel machines

• Sharing one machine between several tasks

• Decomposing one task clearly

• Responding to several sources of events

3

Department of
COMPUTER SCIENCE

Michael Spivey

In this lecture

• Processes: embedded programs are
conveniently structured as a set of
independent processes.

• Messages: processes can cooperate by
exchanging messages in a way that
synchronises their behaviour.

• Shared variables are best avoided by using
messages instead.

4

Department of
COMPUTER SCIENCE

Michael Spivey

Hearts again

static int row = 0;

void advance(void) {
 row++;
 if (row == 3) row = 0;
 GPIO_OUT = heart[row];
}

• Efficient but inflexible.

• Can’t pause inside subroutines or control
structures.

5

Department of
COMPUTER SCIENCE

Michael Spivey

But also primes

Use interrupts to overlap printing with the search,
but ...

• When the serial buffer is full, wastes time
waiting in a loop.

• Disables interrupts to protect the buffer from
concurrent modification – hard to get right.

We’re ready for to use an operating system:
enter micro:bian!

6

Department of
COMPUTER SCIENCE

Michael Spivey

Better: a process

static void heart_task(int arg) {
 while (1) {
 show(heart, 70);
 show(small, 10);
 show(heart, 10);
 show(small, 10);
 }
}

7

static void show(int img[], int n) {
 while (n-- > 0) {
 for (int p = 0; p < 3; p++) {
 GPIO_OUT = img[p];
 timer_delay(5);
 }
 }
}

Department of
COMPUTER SCIENCE

Michael Spivey

Another, independent process

static void prime_task(int arg) {
 int p = 2, n = 0;

 while (1) {
 if (prime(p)) {
 n++;
 printf("prime(%d) = %d\n", n, p);
 }
 p++;
 }
}

8

serial_putc(c);

Department of
COMPUTER SCIENCE

Michael Spivey

Setting the ball rolling
void init(void) {
 SERIAL = start("Serial", serial_task, 0, STACK);
 TIMER = start("Timer", timer_task, 0, STACK);
 HEART = start("Heart", heart_task, 0, STACK);
 PRIME = start("Prime", prime_task, 0, STACK);
}

• a fixed collection of processes created before
concurrent execution begins.

• our two processes, plus device drivers for the
timer (timer_delay) and serial port
(serial_putc); plus an idle task.

9

Department of
COMPUTER SCIENCE

Michael Spivey

Processes

Each a ‘main program’ in its own right

• It can call subroutines.

• It can pause (or be interrupted) at any point to
give others a go.

Implementation

• Processes are interleaved.

• Each has its own stack.

micro:bian supports a fixed set of processes.

10

Department of
COMPUTER SCIENCE

Michael Spivey

Other operating systems

• Processes with communication

• Memory management

• Drivers for I/O devices

• File system

• Networking

micro:bian supports processes and messages,
and whatever device drivers we write.

No utility programs, shared libraries, GUI, ... either.

11

Department of
COMPUTER SCIENCE

Michael Spivey

Sending messages

void prime_task(int arg) {
 int n = 2;
 message m;

 while (1) {
 if (prime(n)) {
 m.int1 = n;
 send(USEPRIME, PRIME, &m);
 }
 n++;
 }
}

12

Department of
COMPUTER SCIENCE

Michael Spivey

Receiving messages

void summary_task(int arg) {
 int count = 0, limit = arg; message m;

 while (1) {
 receive(PRIME, &m);
 while (m.int1 >= limit) {
 report(count, limit);
 limit += arg;
 }
 count++;
 }
}

13

Department of
COMPUTER SCIENCE

Michael Spivey

Rules for messages

Both sender and receiver have a message buffer
(16 bytes).

• The sender assembles a message; then

• It is transferred from sender to receiver as an
atomic action.

• No buffering, no queues of messages!

14

Department of
COMPUTER SCIENCE

Michael Spivey

Alternatives to messages

Message passing:

• no “shared variables” between processes.

• all communication by messages

Shared variables with semaphores:

• like the serial output buffer.

• more efficient, but hard to get right.

15

Copyright © 2020–22 J. M. Spivey

Department of
COMPUTER
SCIENCE

Mike Spivey
Hilary Term 2022

Device drivers

Department of
COMPUTER SCIENCE

Michael Spivey

In this lecture

• Interrupts can be tamed by turning them into
‘messages from the hardware’.

• Device drivers look after hardware devices by
serving requests one at a time in a loop.

(See wiki and Lab 4 for all details – many are
omitted here for clarity.)

17

Department of
COMPUTER SCIENCE

Michael Spivey

Implementing serial output

void serial_putc(char ch) {
 message m;
 m.int1 = ch;
 send(SERIAL, PUTC, &m);
}

• request message sent to the SERIAL driver.

• the caller waits if the driver is not ready.

18

Department of
COMPUTER SCIENCE

Michael Spivey

Implementing the driver process
void serial_task(int arg) {
 static char txbuf[NBUF];
 int bufin, bufout, bufcount;
 message m; char ch;

 serial_setup();

 while (1) {
 receive(ANY, &m);
 switch (m.m_type) {
 ...
 }
 }
}

19

State is
local to the

driver

A server
loop accepts

requests

Department of
COMPUTER SCIENCE

Michael Spivey

Setting things up

void serial_setup(void) {
 ...

 connect(UART_IRQ);
 enable_irq(UART_IRQ);
 UART.INTENSET = BIT(UART_INT_TXDRDY);
}

20

Department of
COMPUTER SCIENCE

Michael Spivey

Handling PUTC messages
while (1) {
 receive(ANY, &m);
 switch (m.m_type) {
 case PUTC:
 ch = m.int1;
 txbuf[bufin] = ch; ...
 break;

 ...
 }
}

• Buffer variables are local, so no other process
can interfere.

21

Department of
COMPUTER SCIENCE

Michael Spivey

Handling interrupts

Key insight:

 an interrupt is a message from the hardware.

 receive(ANY, &m);
 switch (m.m_type) {
 case INTERRUPT:
 if (UART_TXDRDY) {
 txidle = 1;
 UART_TXDRDY = 0;
 }
 clear_pending(UART_IRQ);
 enable_irq(UART_IRQ);
 break;

22

Department of
COMPUTER SCIENCE

Michael Spivey

Responding to events
while (1) {
 receive(ANY, &m);
 switch (m.m_type) {
 ...
 }

 if (txidle && bufcount > 0) {
 UART.TXD = txbuf[bufout]; ...
 txidle = 0;
 }
}

23

Department of
COMPUTER SCIENCE

Michael Spivey

When the buffer is full

Let’s replace

 receive(ANY, &m);

with

 if (bufcount < NBUF)
 receive(ANY, &m);
 else
 receive(INTERRUPT, &m);

When the buffer is full, we just stop accepting
requests until it has emptied a bit.

24

Department of
COMPUTER SCIENCE

Michael Spivey

Omitted here ...

Lab 4 has a more elaborate serial driver

• Supports both output and input with echoing
and line editing.

• All UART initialisation details are filled in.

• There’s an alternative interface print_buf
that overcomes the one-message-per-
character bottleneck.

25

Department of
COMPUTER SCIENCE

Michael Spivey

The standard interrupt handler

void default_handler(void) {
 int irq = active_irq();
 int task = os_handler[irq];
 disable_irq(irq);
 interrupt(task);
}

26

Copyright © 2020–22 J. M. Spivey

Department of
COMPUTER
SCIENCE

Mike Spivey
Hilary Term 2022

Implementing
Processes

Department of
COMPUTER SCIENCE

Michael Spivey

Concurrent processes

We want multiple processes, each with its own
stack. For simplicity,

• A fixed set of processes, created at the start.

• Each process has a fixed amount of stack
space.

28

Department of
COMPUTER SCIENCE

Michael Spivey

Implementing processes

The plan:

• Enter the OS via a software interrupt
instruction svc, or by a normal interrupt

• Save the entire processor state on the stack

• After choosing a new process, restore its state
to continue.

Made easier by having a separate stack for the
operating system.

29

send

Department of
COMPUTER SCIENCE

Michael Spivey

Saved regs

psp

Increasing addresses

msp

Context switch – part 1

30

P

Saved state

SVC
handler

Process stack A Main OS stack

2. The hardware saves
some state, switches to

the main stack, and
invokes the SVC handler

1. Function send executes
an svc instruction

send

Department of
COMPUTER SCIENCE

Michael Spivey

Saved regs

psp

Increasing addresses

msp

Context switch – part 2

31

P

Saved state

SVC
handler

Process stack A Main OS stack

More saved
state

3. The SVC handler
saves more state

sys_call

4. Then the SVC handler
calls the operating

system kernel

Department of
COMPUTER SCIENCE

Michael Spivey

Increasing addresses
Context switch – part 3

32

Main OS stack

msp

SVC
handler

sys_call

mini_send

deliver

5. The operating system
can call internal subroutines

Process stack BMain OS stack

Department of
COMPUTER SCIENCE

Michael Spivey

Increasing addresses
Context switch – part 4

33

psp

receive

Saved regsR

Saved state

More saved
state

msp

SVC
handler

sys_call

6. The OS selects a new
process and passes its
sp to the SVC handler

Department of
COMPUTER SCIENCE

Michael Spivey

Increasing addresses
Context switch – part 5

34

psp

receive

Saved regsR

Saved state

msp

SVC
handler

7. The SVC handler
restores some state.

Process stack BMain OS stack

Department of
COMPUTER SCIENCE

Michael Spivey

Increasing addresses
Context switch – part 6

35

psp
receive

Saved regsR
msp

8. The interrupt return
mechanism resumes

process B

Process stack BMain OS stack

Department of
COMPUTER SCIENCE

Michael Spivey

System calls – client side

void NOINLINE yield(void) {
 syscall(SYS_YIELD);
}

void NOINLINE send(int dest, int type,
 message *msg) {
 syscall(SYS_SEND);
}

36

Generates an svc
instruction

OS will find arguments in
registers r0-r2

Department of
COMPUTER SCIENCE

Michael Spivey

Implementing the SVC handler

37

svc_handler:
 isave @ Complete saving of state
 @@ Argument in r0 is sp of old process
 bl system_call @ Perform system call
 @@ Result in r0 is sp of new process
 irestore @ Restore saved state

(in mpx-m0.s)

Department of
COMPUTER SCIENCE

Michael Spivey

Saving the state

38

@@@ isave -- save context for system call
 .macro isave
 mrs r0, psp @ Get thread stack pointer
 subs r0, #36
 movs r1, r0
 mov r3, lr @ Preserve magic value
 stm r1!, {r3-r7} @ Save low regs on thread stack
 mov r4, r8 @ Copy from high to low
 mov r5, r9
 mov r6, r10
 mov r7, r11
 stm r1!, {r4-r7} @ Save high regs on thread stack
 .endm @ Return new thread sp

Department of
COMPUTER SCIENCE

Michael Spivey

System calls – OS side

39

unsigned *system_call(unsigned *psp) {
 short *pc = (short *) psp[PC_SAVE];
 int op = pc[-1] & 0xff;

 os_current->sp = psp;

 switch (op) {
 case SYS_YIELD:
 make_ready(os_current);
 choose_proc();
 break;
 ...
 }

 return os_current->sp;
}

Department of
COMPUTER SCIENCE

Michael Spivey

Completing the story

Two details remain:

• How to start a process.

• How to start the entire operating system.

40

Department of
COMPUTER SCIENCE

Michael Spivey

Starting a process

41

The first time a process runs, it is resumed just as
if returning from a system call.

So we set up a fake exception frame that invokes
the process body when resumed.

• r0 = integer argument,

• pc = process body,

• lr = address of exit stub, in case body
returns.

Department of
COMPUTER SCIENCE

Michael Spivey

Starting the system
After creating all the processes that make up the program,
the main program becomes the idle process.

void __start(void) {
 /* Create idle process */
 ...

 /* Call the application's setup function */
 init();

 /* The main program morphs into the idle process. */
 os_current = idle_proc;
 set_stack(os_current->sp);
 idle_task();
}

42

Department of
COMPUTER SCIENCE

Michael Spivey

The idle process

Having an idle process saves us from ever having
no process to run.

/* idle_task -- body of the idle process */
void idle_task(void) {
 /* Pick a genuine process to run */
 yield();

 /* When there's nothing to do: */
 while (1) pause();
}

43

Department of
COMPUTER SCIENCE

Michael Spivey

In conclusion

By saving the state of all registers on the stack, the
context switch mechanism can suspend a process
so that it can be resumed later.

There’s always some machine-dependent intricacy
to this, but the outline is always the same.

We have separated the mechanism of context
switch from the policy decisions about what
process should run when.

44

Copyright © 2020–22 J. M. Spivey

Department of
COMPUTER
SCIENCE

Mike Spivey
Hilary Term 2022

Scheduling and
Messages

Department of
COMPUTER SCIENCE

Michael Spivey

Process states

46

• ACTIVE – running or ready to run.

• SENDING, RECEIVING – waiting to exchange
a message.

• IDLING – the idle process.

• DEAD – after exiting.

Each process can be on at most one queue.

Department of
COMPUTER SCIENCE

Michael Spivey

Process priorities

0: Device drivers.

1: Normal processes, high priority.

2: Normal processes, default priority.

3: The idle process.

• When should a normal process be given high
priority?

47

Idling

ActiveActiveActive

ActiveActive

Department of
COMPUTER SCIENCE

Michael Spivey

Implementation: ready queues

48

0:

1:

2:

3:

Pr
io

rit
y

le
ve

ls

Department of
COMPUTER SCIENCE

Michael Spivey

Pre-emptive scheduling

49

micro:bian is pre-emptive: a process can be
suspended involuntarily (for example on interrupt),
or when it calls send() or receive().

Scheduling is not time-based: there is no attempt
to share time equally between ready processes.

A process can call yield() voluntarily, but this is
rarely necessary.

You can run a timer task if you like, but it is not
compulsory.

Department of
COMPUTER SCIENCE

Michael Spivey

Rendezvous principle

Two processes must both arrive at send() and
receive() for a message to be passed.

• So some processes are waiting to receive –
not on any queue.

• Others are waiting to send to a specific
receiver – on a queue for that receiver.

50

Rcving Sending

Sending

SendingActive Sending

Rcving

Sending

Department of
COMPUTER SCIENCE

Michael Spivey

Sending queues

51

Each process has a queue of
others waiting to send to it.

