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In this part

• Concurrent processes and messages between 
them as a way of structuring complex systems 
that respond to events (L12).

• Managing I/O devices with driver processes 
that receive interrupts as messages (L13).

• Implementing multiple processes (L14).

• Messages and scheduling (L15).

• Chasing down a bug (L16).
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Why concurrency?

• Genuinely parallel machines

• Sharing one machine between several tasks

• Decomposing one task clearly

• Responding to several sources of events
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In this lecture

• Processes: embedded programs are 
conveniently structured as a set of 
independent processes.

• Messages: processes can cooperate by 
exchanging messages in a way that 
synchronises their behaviour.

• Shared variables are best avoided by using 
messages instead.
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Hearts again

static int row = 0;

void advance(void) {
    row++;
    if (row == 3) row = 0;
    GPIO_OUT = heart[row];
}

• Efficient but inflexible.

• Can’t pause inside subroutines or control 
structures.
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But also primes

Use interrupts to overlap printing with the search, 
but ...

• When the serial buffer is full, wastes time 
waiting in a loop.

• Disables interrupts to protect the buffer from 
concurrent modification – hard to get right.

We’re ready for to use an operating system:
enter micro:bian!

6



Department of
COMPUTER SCIENCE

Michael Spivey

Better: a process

static void heart_task(int arg) {
    while (1) {
        show(heart, 70);
        show(small, 10);
        show(heart, 10);
        show(small, 10);
    }
}

7

static void show(int img[], int n) {
    while (n-- > 0) {
        for (int p = 0; p < 3; p++) {
            GPIO_OUT = img[p];
            timer_delay(5);
        }
    }
}
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Another, independent process

static void prime_task(int arg) {
    int p = 2, n = 0;

    while (1) {
        if (prime(p)) {
            n++;
            printf("prime(%d) = %d\n", n, p);
        }
        p++;
    }
}
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serial_putc(c);
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Setting the ball rolling
void init(void) {
    SERIAL = start("Serial", serial_task, 0, STACK);
    TIMER = start("Timer", timer_task, 0, STACK);
    HEART = start("Heart", heart_task, 0, STACK);
    PRIME = start("Prime", prime_task, 0, STACK);
}

• a fixed collection of processes created before 
concurrent execution begins.

• our two processes, plus device drivers for the 
timer (timer_delay) and serial port 
(serial_putc); plus an idle task.
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Processes

Each a ‘main program’ in its own right

• It can call subroutines.

• It can pause (or be interrupted) at any point to 
give others a go.

Implementation

• Processes are interleaved.

• Each has its own stack.

micro:bian supports a fixed set of processes.
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Other operating systems

• Processes with communication

• Memory management

• Drivers for I/O devices

• File system

• Networking

micro:bian supports processes and messages, 
and whatever device drivers we write.

No utility programs, shared libraries, GUI, ... either.
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Sending messages

void prime_task(int arg) {
    int n = 2;
    message m;

    while (1) {
        if (prime(n)) {
            m.int1 = n;
            send(USEPRIME, PRIME, &m);
        }
        n++;
    }
}
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Receiving messages

void summary_task(int arg) {
    int count = 0, limit = arg; message m;

    while (1) {
        receive(PRIME, &m);
        while (m.int1 >= limit) {
            report(count, limit);
            limit += arg;
        }
        count++;
    }
}
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Rules for messages

Both sender and receiver have a message buffer 
(16 bytes).

• The sender assembles a message; then

• It is transferred from sender to receiver as an 
atomic action.

• No buffering, no queues of messages!
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Alternatives to messages

Message passing:

• no “shared variables” between processes.

• all communication by messages

Shared variables with semaphores:

• like the serial output buffer.

• more efficient, but hard to get right.
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In this lecture

• Interrupts can be tamed by turning them into 
‘messages from the hardware’.

• Device drivers look after hardware devices by 
serving requests one at a time in a loop.

(See wiki and Lab 4 for all details – many are 
omitted here for clarity.)
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Implementing serial output

void serial_putc(char ch) {
    message m;
    m.int1 = ch;
    send(SERIAL, PUTC, &m);
}

• request message sent to the SERIAL driver.

• the caller waits if the driver is not ready.
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Implementing the driver process
void serial_task(int arg) {
    static char txbuf[NBUF];
    int bufin, bufout, bufcount;
    message m; char ch;

    serial_setup();

    while (1) {
        receive(ANY, &m);
        switch (m.m_type) {
            ...
        }
    }
}
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State is 
local to the 

driver

A server 
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Setting things up

void serial_setup(void) {
    ...

    connect(UART_IRQ);
    enable_irq(UART_IRQ);
    UART.INTENSET = BIT(UART_INT_TXDRDY);
}
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Handling PUTC messages
while (1) {
    receive(ANY, &m);
    switch (m.m_type) {
    case PUTC:
        ch = m.int1;
        txbuf[bufin] = ch; ...
        break;

        ...
    }
}

• Buffer variables are local, so no other process 
can interfere.

21



Department of
COMPUTER SCIENCE

Michael Spivey

Handling interrupts

Key insight:

 an interrupt is a message from the hardware.

    receive(ANY, &m);
    switch (m.m_type) {
    case INTERRUPT:
        if (UART_TXDRDY) {
            txidle = 1;
            UART_TXDRDY = 0;
        }
   clear_pending(UART_IRQ);
   enable_irq(UART_IRQ);
        break;
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Responding to events
while (1) {
    receive(ANY, &m);
    switch (m.m_type) {
            ...
    }

    if (txidle && bufcount > 0) {
        UART.TXD = txbuf[bufout]; ...
        txidle = 0;
    }
}
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When the buffer is full

Let’s replace

 receive(ANY, &m);

with

 if (bufcount < NBUF)
     receive(ANY, &m);
 else
     receive(INTERRUPT, &m);

When the buffer is full, we just stop accepting 
requests until it has emptied a bit.
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Omitted here ...

Lab 4 has a more elaborate serial driver

• Supports both output and input with echoing 
and line editing.

• All UART initialisation details are filled in.

• There’s an alternative interface print_buf 
that overcomes the one-message-per-
character bottleneck.
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The standard interrupt handler

void default_handler(void) {
    int irq = active_irq();
    int task = os_handler[irq];
    disable_irq(irq);
    interrupt(task);
}

26



Copyright © 2020–22 J. M. Spivey

Department of
COMPUTER
SCIENCE

Mike Spivey
Hilary Term 2022

Implementing 
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Concurrent processes

We want multiple processes, each with its own 
stack.  For simplicity,

• A fixed set of processes, created at the start.

• Each process has a fixed amount of stack 
space.
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Implementing processes

The plan:

• Enter the OS via a software interrupt
instruction svc, or by a normal interrupt

• Save the entire processor state on the stack

• After choosing a new process, restore its state 
to continue.

Made easier by having a separate stack for the 
operating system.
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Saved regs

psp

Increasing addresses

msp

Context switch – part 1
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P

Saved state

SVC 
handler

Process stack A Main OS stack

2. The hardware saves 
some state, switches to 

the main stack, and 
invokes the SVC handler

1. Function send executes 
an svc instruction
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Saved regs

psp

Increasing addresses
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Saved state

SVC 
handler

Process stack A Main OS stack

More saved 
state

3. The SVC handler 
saves more state

sys_call

4. Then the SVC handler 
calls the operating 

system kernel
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Increasing addresses
Context switch – part 3
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Main OS stack

msp

SVC 
handler

sys_call

mini_send

deliver

5. The operating system 
can call internal subroutines
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Increasing addresses
Context switch – part 4
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6. The OS selects a new 
process and passes its 
sp to the SVC handler
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Increasing addresses
Context switch – part 5
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7. The SVC handler 
restores some state.
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Increasing addresses
Context switch – part 6
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receive

Saved regsR
msp

8. The interrupt return 
mechanism resumes 

process B

Process stack BMain OS stack
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System calls – client side

void NOINLINE yield(void) {
    syscall(SYS_YIELD);
}

void NOINLINE send(int dest, int type,
                   message *msg) {
    syscall(SYS_SEND);
}

36

Generates an svc 
instruction

OS will find arguments in 
registers r0-r2
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Implementing the SVC handler
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svc_handler:
    isave @ Complete saving of state
    @@ Argument in r0 is sp of old process
    bl system_call @ Perform system call
    @@ Result in r0 is sp of new process
    irestore @ Restore saved state

(in mpx-m0.s)
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Saving the state
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@@@ isave -- save context for system call
    .macro isave
    mrs r0, psp @ Get thread stack pointer
    subs r0, #36
    movs r1, r0
    mov r3, lr @ Preserve magic value
    stm r1!, {r3-r7} @ Save low regs on thread stack
    mov r4, r8 @ Copy from high to low
    mov r5, r9
    mov r6, r10
    mov r7, r11
    stm r1!, {r4-r7} @ Save high regs on thread stack
    .endm @ Return new thread sp
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System calls – OS side

39

unsigned *system_call(unsigned *psp) {
    short *pc = (short *) psp[PC_SAVE];
    int op = pc[-1] & 0xff;

    os_current->sp = psp;

    switch (op) {
    case SYS_YIELD:
        make_ready(os_current);
        choose_proc();
        break;
        ...
    }

    return os_current->sp;
}
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Completing the story

Two details remain:

• How to start a process.

• How to start the entire operating system.
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Starting a process
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The first time a process runs, it is resumed just as 
if returning from a system call.

So we set up a fake exception frame that invokes 
the process body when resumed.

• r0 = integer argument,

• pc = process body,

• lr = address of exit stub, in case body 
returns.
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Starting the system
After creating all the processes that make up the program, 
the main program becomes the idle process.

void __start(void) {
    /* Create idle process */
    ...

    /* Call the application's setup function */
    init();

    /* The main program morphs into the idle process. */
    os_current = idle_proc;
    set_stack(os_current->sp);
    idle_task();
}
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The idle process

Having an idle process saves us from ever having 
no process to run.

/* idle_task -- body of the idle process */
void idle_task(void) {
    /* Pick a genuine process to run */
    yield();                    

    /* When there's nothing to do: */
    while (1) pause();
}

43



Department of
COMPUTER SCIENCE

Michael Spivey

In conclusion

By saving the state of all registers on the stack, the 
context switch mechanism can suspend a process 
so that it can be resumed later.

There’s always some machine-dependent intricacy 
to this, but the outline is always the same.

We have separated the mechanism of context 
switch from the policy decisions about what 
process should run when.
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Scheduling and 
Messages
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Process states
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• ACTIVE – running or ready to run.

• SENDING, RECEIVING – waiting to exchange 
a message.

• IDLING – the idle process.

• DEAD – after exiting.

Each process can be on at most one queue.
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Process priorities

0: Device drivers.

1: Normal processes, high priority.

2: Normal processes, default priority.

3: The idle process.

• When should a normal process be given high 
priority?
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Implementation: ready queues
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Pre-emptive scheduling
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micro:bian is pre-emptive: a process can be 
suspended involuntarily (for example on interrupt), 
or when it calls send() or receive().

Scheduling is not time-based: there is no attempt 
to share time equally between ready processes.

A process can call yield() voluntarily, but this is 
rarely necessary.

You can run a timer task if you like, but it is not 
compulsory.
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Rendezvous principle

Two processes must both arrive at send() and 
receive() for a message to be passed.

• So some processes are waiting to receive – 
not on any queue.

• Others are waiting to send to a specific 
receiver – on a queue for that receiver.
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Sending queues
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Each process has a queue of
others waiting to send to it.


