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In this part

» Concurrent processes and messages between
them as a way of structuring complex systems
that respond to events (L12).

* Managing I/0O devices with driver processes
that receive interrupts as messages (L13).

« Implementing multiple processes (L14).
« Messages and scheduling (L15).
* Chasing down a bug (L16).
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Why concurrency?

* Genuinely parallel machines
» Sharing one machine between several tasks
* Decomposing one task clearly

* Responding to several sources of events
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In this lecture

* Processes: embedded programs are
conveniently structured as a set of
independent processes.

* Messages: processes can cooperate by
exchanging messages in a way that
synchronises their behaviour.

» Shared variables are best avoided by using
messages instead.
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Hearts again

static int row = O;

void advance(void) {
row++:
if (row == 3) row = 0;
GPIO_OUT = heart|[row]:

« Efficient but inflexible.

» (Can't pause inside subroutines or control
structures.
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But also primes

Use interrupts to overlap printing with the search,
but ...

 When the serial buffer is full, wastes time
waiting in a loop.

» Disables interrupts to protect the buffer from
concurrent modification — hard to get right.

We're ready for to use an operating system:
enter micro:bian!
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Better: a process

static void heart_task(int arg) {
while (1) {
show(heart, 70);

show(small, 10);
chow(heart 10) -

static void show(int img[], int n) {
) while (n-- > 0) {

} for (int p = 8; p < 3; p++) {
GPIO_OUT = imgl[p];
timer_delay(5);

}
}
)
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Another, independent process

=z A I A R o oo

static void prime_task(int arg) A
int p =2, n = 0;

while (1) |
if (prime(p)) {
n++:
printf("prime(%d) = %d\n", n, p);

}

p++;
} e T —
} (. serial_putc(c);
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Setting the ball rolling

void init(void) {
SERIAL = start("Serial", serial_task, 0, STACK);
TIMER = start("Timer", timer_task, 0, STACK);
HEART = start("Heart", heart_task, 0, STACK);
PRIME = start("Prime", prime_task, 0, STACK);

 a fixed collection of processes created before
concurrent execution begins.

* ourtwo processes, plus device drivers for the
timer (timer_delay) and serial port
(serial_putc); plus an idle task.
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Processes

Each a ‘main program’ in its own right
* |t can call subroutines.

* It can pause (or be interrupted) at any point to
give others a go.

Implementation
* Processes are interleaved.

« Each has its own stack.

micro:bian supports a fixed set of processes.
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Other operating systems

* Processes with communication
 Memory management

* Drivers for I/0 devices

* File system

* Networking

micro:bian supports processes and messages,
and whatever device drivers we write.

No utility programs, shared libraries, GUI, ... either.
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Sending messages

void prime_task(int arg) {
int n = 2;
message m;

while (1) {
if (prime(n)) {
m.int1l = n;
Send(USEPRIME PRIME, &m);

n++;
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Recelving messages

void summary_task(int arg) {
int count = 0, limit = arg; message m,;

while (1) A
receive(PRIME, &m);
while (m.int1 >= limit)
report(count, limit);
limit += arg;
}

count++:
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Rules for messages

Both sender and receiver have a message buffer
(16 bytes).

* The sender assembles a message; then

* |tistransferred from sender to receiver as an
atomic action.

* No buffering, no queues of messages!
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Alternatives to messages

Message passing:
* no “shared variables” between processes.
» all communication by messages

Shared variables with semaphores:
* like the serial output buffer.

» more efficient, but hard to get right.
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Device drivers
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In this lecture

* Interrupts can be tamed by turning them into
‘messages from the hardware'.

» Device drivers look after hardware devices by
serving requests one at a time in a loop.

(See wiki and Lab 4 for all details — many are
omitted here for clarity.)
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Implementing serial output

void serial_putc(char ch) {
message m;
m.int1 = ch;
send(SERIAL, PUTC, &m);

* request message sent to the SERTAL driver.

 the caller waits if the driver is not ready.
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Implementing the driver process

i A oo

void serial_task(int arg) {
static char txbuf[NBUF];wmmmM%j”

i ' ) State Is
it oufin, bufout, PUTEOUNT: | jocal to the
| ' _ driver
serial_setup();
while (1) {—— P .
receive(ANY, &m); | A server
switch (m.m_type) { OOp accepts
_ requests
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Setting things up

void serial_setup(void) {

connect (UART_IRQ) ;
enable_irq(UART_IRQ);
UART.INTENSET = BIT(UART_INT_TXDRDY);
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Handling PUTC messages

while (1) A
receive(ANY, &m);
switch (m.m_type) A

case PUITC:
ch = m.int1;
txbuf[bufin] =
break:

h

* Buffer variables are local, so no other process
can interfere.
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Handling interrupts

Key insight:
an interrupt is a message from the hardware.

receive (ANY, &m);
switch (m.m_type) A
case INTERRUPT:
if (UART_TXDRDY) {
txidle = 1;
UART_TXDRDY = 0O;
}
clear_pending(UART_IRQ) ;
enable_irq(UART_IRQ);
break:
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Responding to events

=z A I A R o oo

while (1) A
receive (ANY, &m)
switch (m.m_type

}

if (txidle && bufcount > 0) {
UART.TXD = txbuf[bufout];
txidle = ©;

) {
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When the buffer i1s full

Let’s replace
receive(ANY, &m);
with

if (bufcount < NBUF)
receive(ANY, &m);

else
receive (INTERRUPT, &m);

When the buffer is full, we just stop accepting
requests until it has emptied a bit.
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Omitted here ...

Lab 4 has a more elaborate serial driver

» Supports both output and input with echoing
and line editing.

 All UART initialisation details are filled in.

* There's an alternative interface print_buf
that overcomes the one-message-per-
character bottleneck.
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The standard interrupt handler

void default_handler(void) {
int irqg = active_irq();
int task = os_handler[irq];
disable_irq(irq);
interrupt(task);
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Implementing
Processes
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Concurrent processes

We want multiple processes, each with its own
stack. For simplicity,

» A fixed set of processes, created at the start.

» Each process has a fixed amount of stack
space.
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Implementing processes

The plan:

* Enter the OS via a software interrupt
instruction svc, or by a normal interrupt

» Save the entire processor state on the stack

» After choosing a new process, restore its state
to continue.

Made easier by having a separate stack for the
operating system.

Michael Spivey
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Context switch — part 1

V . o i RS DO SRR RS S S PR PSRRI A M A

e

1. Function send executes
an svc instruction

PSP

2. The hardware saves
some state, switches to
the main stack, and
invokes the SVC handler

Ss9ssalppe buisesalou)

Process stack A Main OS stack
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Context part2
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g " 4. Then the SVC handler 5
3. The SVC handler :
calls the operating
saves more state
system kernel
Process stack A Main OS stack
é’ UNIVERSITY OF Department of Michael Spivey

== 0) QUOINDE ~\\PUTER SCIENCE 31



parts

msp

| 5.The operating system

can call internal subroutines

Main OS stack

w,
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2 O,
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Context switch —partd
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é’ UNIVERSITY OF Department of Michael Spivey

= OO QLI IDE \\PUTER SCIENCE 33



Context switch — part 5
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Context switch — part 6

msp—>

PSP
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8. The interrupt return
mechanism resumes

process B
———

Main OS stack Process stack B
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System calls — client side

void NOINLINE yield(void) {
syscall(SYS_YIELD);

}

void NOINLINE send(int dest, int type,
message *msg) {
syscall(SYS_SEND) ;

e
OS will find arguments in\

registers ré-r2

Y,
s N
Generates an svc
Instruction
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Implementing the SVC handler

svc_handler:
1save @ Complete saving of state

@@ Argument in r@ is sp of old process
bl system_call @ Perform system call

@@ Result in r@ is sp of new process
1restore @ Restore saved state

(inmpx-m@. s)

Michael Spivey
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Saving the state

@@@ isave -- save context for system call
.macro isave
mrs r@, psp @ Get thread stack pointer
subs ro, #36
movs r1, ro@
mov r3, 1r @ Preserve magic value
stm r1!, {r3-r7} @ Save low regs on thread stack
mov r4, r8 @ Copy from high to low

mov r5, r9

mov r6, r10@

mov r/, ri1

stm r1!, {rd4-r7} @ Save high regs on thread stack
.endm @ Return new thread sp

£4) UNIVERSITY OF Department of Michael Spivey

=0 AGQINIE ~()\\PUTER SCIENCE 38



System calls — OS side

unsigned *system_call(unsigned #*psp) {

short *pc = (short *) psp[PC_SAVE];

int op = pc[-1] & Oxff;
os_current->sp = psp;

switch (op) {
case SYS_YIELD:

make_ready(os_current) ;
choose_proc();
break;

}

return os_current->sp,
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Completing the story

Two details remain:
* How to start a process.

* How to start the entire operating system.

SR UNIVERSITY OF Department of Michael Spivey
MO QACINDE ~)\\PUTER SCIENCE 40



Starting a process

The first time a process runs, it is resumed just as
iIf returning from a system call.

So we set up a fake exception frame that invokes
the process body when resumed.

* r0@ =integer argument,
* pc = process body,

* 1r =address of exit stub, in case body
returns.
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Starting the system

After creating all the processes that make up the program,
the main program becomes the idle process.

void __start(void) {
/* Create idle process */

/* Call the application's setup function =*/
init();

/* The main program morphs into the idle process. */
os_current = idle_proc;

set_stack(os_current->sp);

idle_task();
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The 1dle process

Having an idle process saves us from ever having
no process to run.

/* idle_task -- body of the idle process */
void idle_task(void) A

/* Pick a genuine process to run */
yield();

/* When there's nothing to do: */
while (1) pause();
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In conclusion

By saving the state of all registers on the stack, the
context switch mechanism can suspend a process
so that it can be resumed later.

There's always some machine-dependent intricacy
to this, but the outline is usually the same.

We have separated the mechanism of context
switch from the policy decisions about what
process should run when.
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Scheduling and
Messages
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Inside the kernel

For simplicity, the kernel of the operating system
cannot be interrupted.

* So we can deal with one interrupt or system
call at a time.

* |'ll describe the internal data structures as a
guide to what the kernel does.
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Process states

Each process is one of
* ACTIVE - running or ready to run.

* SENDING, RECEIVING - waiting to exchange
a message.

 IDLING - theidle process.
* DEAD - after exiting.

Each process can be on at most one queue.
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The process table

struct _proc {
int pid; //
char name[16]; //

unsigned state; //
unsigned *sp; //
int priority; //
proc waiting; //
int pending; //
int msgtype; //
message *msgbuf; //

proc next; //

G UNIVERSITY OF Department of

Process ID

Name for debugging
SENDING, RECEIVING, etc.
Saved stack pointer
Priority: 6 1is highest

Processes waiting to send
Whether interrupt pending
Message to send or receive
Pointer to message buffer

Next process 1n queue
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Process priorities

0: Device drivers.
1: Normal processes, high priority.
2: Normal processes, default priority.

3: The idle process.

* When should a normal process be given high
priority?
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Implementation: ready queues

0: | ¢ .// Jp T UActivelg

%Adi\\/@mﬁive Q
2: 18|
. [Idling Q
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Pre-emptive scheduling

micro:bian is pre-emptive: a process can be
suspended involuntarily (for example on interrupt),

or when it calls send () or receive().

Scheduling is not time-based: there is no attempt
to share time equally between ready processes.

A process can call yield() voluntarily, but this is
rarely necessary.

You can run a timer task if you like, but it is not
compulsory.
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Rendezvous principle

Two processes must both arrive at send () and
receive( ) for a message to be passed.

* SO0 some processes are waiting to receive —
not on any queue.

» Others are waiting to send to a specific
receiver — on a queue for that receiver.
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Sending queues

Each process has a queue of
others waiting to send to it.

[Sending

{Active

a/\‘[Sendin Sendin
/ .

k—/lSendmg

[Rcving @ [Rcving Q/\‘[Sending
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Story of a system call

unsigned *system_call(unsigned *psp) {
short *pc = (short *) psp[PC_SAVE];
int op = pc[-1] & Oxff;

os_current->sp = psp;

switch (op) {
case SYS_SEND:
mini_send(arg(®, int), arg(1, int),
arg(2, message *));
break;

}

return os_current->sp,;
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Implementing send

static void mini_send(int dest, int type,
message *msg) {
int src = os_current->pid;
proc pdest = os_ptable[dest];

if (accept(pdest, type)) { // Receiver is waiting
deliver(pdest->msgbuf, src, msg);
make_ready(pdest); make_ready(os_current);

} else { // Sender joins the receiver's queue
set_state(os_current, SENDING, type, msgqg);
enqueue(pdest) ;

}

choose_proc();
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Choosing the next process

static inline void choose_proc(void) {
for (int p = 0; p < NPRIO; p++) {
queue q = &os_readyqlp];

if (g->head !'= NULL) {
os_current = g->head;
q->head = os_current->next;
return;

}

os_current = idle_proc;
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Implementing receive

static void mini_receive(int type, message *msg) {
if (os_current->pending // Is an interrupt due?
&& (type == ANY || type == INTERRUPT)) {
os_current->pending = 0;
deliver(msg, HARDWARE, INTERRUPT, NULL);

} else {
proc psrc = find_sender(os_current, type);
if (psrc !'= NULL) A // Is a sender waiting?

deliver(msg, psrc->pid, psrc->msgbuf);
make_ready(os_current); make_ready(psrc);
} else { // No luck: we must wait
set_state(os_current, RECEIVING, type, msgqg);
}

choose_proc();
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Joining the queue

static inline void enqueue(proc pdest) A

os_current->next = NULL;
if (pdest->waiting == NULL)

pdest->waiting = os_current;
else {

proc r = pdest->waiting;

while (r->next != NULL)

r = r->next;
r->next = os_current;
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Implementing a
device driver
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A temperature sensor

The Nordic chip has a temperature sensor on the
processor die. We will implement

int temp_reading(void)
Use a device driver process

* 10 manage concurrent access,

* to allow connecting to interrupts.
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Hardware reqgisters

There's a device TEMP (address 0x4000C000) with
* A task START (offset 0x000) to start a reading.

* An event DATARDY (offset 0x100) that signals
the reading is ready.

* Aregister INTEN (offset 0x300) where we can
enable an interrupt on DATARDY.

* Aregister TEMP (offset 0x508) where the
reading appears.
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Describing the hardware

In hardware . h:

/* Temperature sensor */
_DEVICE _temp {

_REGISTER(unsigned START, 0x000); /* Task */
_REGISTER(unsigned DATARDY, ©0x100); /* Event */
_REGISTER(unsigned INTEN, ©0x300); /* Registers */
_REGISTER(unsigned VALUE, ©x508);

'

/* Interrupts */
#define TEMP_INT_DATARDY 6

#define TEMP (* (volatile _DEVICE _temp *) 0x4000c000)
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In assembly language

An assignment like

temp = TEMP.VALUE

becomes

ldr r@, =0x4000c5068
1dr r6, [rO]

and that's all that matters.

G2 UNIVERSITY OF Department of
AU COMPUTER SCIENCE

Michael Spivey
63



TEMP.INTEN = BIT(TEMP_INT_DATARDY) ;
connect(TEMP_IRQ);
enable_irq(TEMP_IRQ); connect (TEMP_IRQ)

\ L <

short for
\NVIC.ISER = BIT(12)j

_~TEMP .INTEN = enable_irq(TEMP_IRQ)
BIT(TEMP_INT_DATARDY) )
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IOINDR ~O\|PUTER SCIENCE 64



The driver process

static void temp_task(int arg) {
message m;
int temp, client;

TEMP.INTEN = BIT(TEMP_INT_DATARDY) ;
connect(TEMP_IRQ) ;
enable_irq(TEMP_IRQ);

server loop
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The server loop

while (1) A
receive(ANY, &m);
switch (m.type) {
case REQUEST:
client = m.sender;

. take a reading

m.int1 = temp;
send(client, REPLY, &m);
break;

default:
badmesg(m.type);
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Taking a reading

TEMP.START = 1;
receive(INTERRUPT, NULL);
assert(TEMP.DATARDY) ;
temp = TEMP.VALUE;

TEMP.DATARDY = 0;
clear_pending(TEMP_IRQ) ;
enable_irq(TEMP_IRQ);

* onerequest at a time, so we can stop to wait
for the interrupt.

GER) UNIVERSITY OF Department of Michael Spivey

=A@ QUOINDE —()\\PUTER SCIENCE 67



A client subroutine

int temp_reading(void) {
message m;

sendrec(TEMP_TASK, RﬁQUEST, &m) ;
return m.m_1int1;

e N
short for

send(TEMP_TASK, REQUEST, &m);

receive(REPLY, &m);
_ Y,
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Why sendrec()?

* It's a handy abbreviation.

* [t is slightly more efficient — avoids two
context switches.

* [t solves the problem of priority inversion.
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Priority inversion

* The server receives a request, takes a reading,
then tries to send the result to a client.

» Meanwhile, the client has been squeezed out
by other processes, and has not run again: it

has yet to reach its receive (REPLY, ...).

* So the (high-priority) server must wait for the
(low-priority) client before continuing.

Solution: use sendrec () so the client promises in
advance to accept the reply.
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Links

* Concurrent Programming — programs that
exploit parallel processing.

» Concurrency — proving that concurrent
programs e.g. don't suffer from deadlock.

» Compilers — automating the translation into
assembly language.

» Computer Architecture — designing hardware
for performance.
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Next term

* First half: designing combinational and
sequential logic circuits.

» Building a tool-kit of architectural elements.

» Second half: designing a datapath and control
that can execute (some) Thumb instructions.
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