Introducing micro:bian

Mike Spivey
Hilary Term 2022

5] Department of
el COMPUTER

UNIVERSITY OF

e i) OCIENCE

Copyright © 2020-22 J. M. Spivey



In this part

» Concurrent processes and messages between
them as a way of structuring complex systems
that respond to events (L12).

* Managing I/0O devices with driver processes
that receive interrupts as messages (L13).

« Implementing multiple processes (L14).
« Messages and scheduling (L15).
* Chasing down a bug (L16).

Fes) UNIVERSITY OF Department of Michael Spivey

S AUIYINE COMPUTER SCIENCE ?



Why concurrency?

* Genuinely parallel machines
» Sharing one machine between several tasks
* Decomposing one task clearly

* Responding to several sources of events

Fe UNIVERSITY OF Department of Michael Spivey
BSOS COMPUTER SCIENCE 3



In this lecture

* Processes: embedded programs are
conveniently structured as a set of
independent processes.

* Messages: processes can cooperate by
exchanging messages in a way that
synchronises their behaviour.

» Shared variables are best avoided by using
messages instead.

WIS Department of Michael Spivey
MO QACINDE ~)\\PUTER SCIENCE 4



Hearts again

static int row = O;

void advance(void) {
row++:
if (row == 3) row = 0;
GPIO_OUT = heart|[row]:

« Efficient but inflexible.

» (Can't pause inside subroutines or control
structures.

Fe UNIVERSITY OF Department of Michael Spivey
BSOS COMPUTER SCIENCE 5



But also primes

Use interrupts to overlap printing with the search,
but ...

 When the serial buffer is full, wastes time
waiting in a loop.

» Disables interrupts to protect the buffer from
concurrent modification — hard to get right.

We're ready for to use an operating system:
enter micro:bian!

G UNIVERSITY OF Department of Michael Spivey
AN COMPUTER SCIENCE 6



Better: a process

static void heart_task(int arg) {
while (1) {
show(heart, 70);

show(small, 10);
chow(heart 10) -

static void show(int img[], int n) {
) while (n-- > 0) {

} for (int p = 8; p < 3; p++) {
GPIO_OUT = imgl[p];
timer_delay(5);

}
}
)
- UNIVERSITY OF Department of Michael Spivey

=0 QAOINDE ~O\\PUTER SCIENCE

7/



Another, independent process

=z A I A R o oo

static void prime_task(int arg) A
int p =2, n = 0;

while (1) |
if (prime(p)) {
n++:
printf("prime(%d) = %d\n", n, p);

}

p++;
} e T —
} (. serial_putc(c);

) Michael Spive
éﬁﬂl UNIVERSITY OF Department O]c bivey

=g @) CAOINDR (\\PUTER SCIENCE 8



Setting the ball rolling

void init(void) {
SERIAL = start("Serial", serial_task, 0, STACK);
TIMER = start("Timer", timer_task, 0, STACK);
HEART = start("Heart", heart_task, 0, STACK);
PRIME = start("Prime", prime_task, 0, STACK);

 a fixed collection of processes created before
concurrent execution begins.

* ourtwo processes, plus device drivers for the
timer (timer_delay) and serial port
(serial_putc); plus an idle task.

WIS Department of Michael Spivey
MO QACINDE ~)\\PUTER SCIENCE 9



Processes

Each a ‘main program’ in its own right
* |t can call subroutines.

* It can pause (or be interrupted) at any point to
give others a go.

Implementation
* Processes are interleaved.

« Each has its own stack.

micro:bian supports a fixed set of processes.

NGNS Department of Michael Spivey
MO QACINDE ~)\\PUTER SCIENCE 10



Other operating systems

* Processes with communication
 Memory management

* Drivers for I/0 devices

* File system

* Networking

micro:bian supports processes and messages,
and whatever device drivers we write.

No utility programs, shared libraries, GUI, ... either.

Fe UNIVERSITY OF Department of Michael Spivey
BSOS COMPUTER SCIENCE T



Sending messages

void prime_task(int arg) {
int n = 2;
message m;

while (1) {
if (prime(n)) {
m.int1l = n;
Send(USEPRIME PRIME, &m);

n++;

UNIVERSITY OF Department of Michael Spivey
L AN COMPUTER SCIENCE "



Recelving messages

void summary_task(int arg) {
int count = 0, limit = arg; message m,;

while (1) A
receive(PRIME, &m);
while (m.int1 >= limit)
report(count, limit);
limit += arg;
}

count++:

Department of Michael Spivey
SN COMPUTER SCIENCE 3



Rules for messages

Both sender and receiver have a message buffer
(16 bytes).

* The sender assembles a message; then

* |tistransferred from sender to receiver as an
atomic action.

* No buffering, no queues of messages!

Fe UNIVERSITY OF Department of Michael Spivey
BSOS COMPUTER SCIENCE 14



Alternatives to messages

Message passing:
* no “shared variables” between processes.
» all communication by messages

Shared variables with semaphores:
* like the serial output buffer.

» more efficient, but hard to get right.

G UNIVERSITY OF Department of Michael Spivey
AN COMPUTER SCIENCE 5



Device drivers

Mike Spivey
Hilary Term 2022

5] Department of
el COMPUTER

UNIVERSITY OF

e i) OCIENCE

Copyright © 2020-22 J. M. Spivey



In this lecture

* Interrupts can be tamed by turning them into
‘messages from the hardware'.

» Device drivers look after hardware devices by
serving requests one at a time in a loop.

(See wiki and Lab 4 for all details — many are
omitted here for clarity.)

G UNIVERSITY OF Department of Michael Spivey
eI COMPUTER SCIENCE .



Implementing serial output

void serial_putc(char ch) {
message m;
m.int1 = ch;
send(SERIAL, PUTC, &m);

* request message sent to the SERTAL driver.

 the caller waits if the driver is not ready.

GasXy UNIVERSITY OF Department of Michael Spivey
AN COMPUTER SCIENCE 18



Implementing the driver process

i A oo

void serial_task(int arg) {
static char txbuf[NBUF];wmmmM%j”

i ' ) State Is
it oufin, bufout, PUTEOUNT: | jocal to the
| ' _ driver
serial_setup();
while (1) {—— P .
receive(ANY, &m); | A server
switch (m.m_type) { OOp accepts
_ requests

GER) UNIVERSITY OF Department of Michael Spivey

=A@ QUOINDE —()\\PUTER SCIENCE 19



Setting things up

void serial_setup(void) {

connect (UART_IRQ) ;
enable_irq(UART_IRQ);
UART.INTENSET = BIT(UART_INT_TXDRDY);

GasXy UNIVERSITY OF Department of Michael Spivey
AN COMPUTER SCIENCE 20



Handling PUTC messages

while (1) A
receive(ANY, &m);
switch (m.m_type) A

case PUITC:
ch = m.int1;
txbuf[bufin] =
break:

h

* Buffer variables are local, so no other process
can interfere.

ﬁ UNIVERSITY OF Department of Michael Spivey

== 0) QUOINDE ~\\PUTER SCIENCE 21



Handling interrupts

Key insight:
an interrupt is a message from the hardware.

receive (ANY, &m);
switch (m.m_type) A
case INTERRUPT:
if (UART_TXDRDY) {
txidle = 1;
UART_TXDRDY = 0O;
}
clear_pending(UART_IRQ) ;
enable_irq(UART_IRQ);
break:

£4) UNIVERSITY OF Department of Michael Spivey
RSN E COMPUTER SCIENCE 22



Responding to events

=z A I A R o oo

while (1) A
receive (ANY, &m)
switch (m.m_type

}

if (txidle && bufcount > 0) {
UART.TXD = txbuf[bufout];
txidle = ©;

) {

) Michael Spive
) UNIVERSITY OF Department O]c bivey

= OO QLI IDE \\PUTER SCIENCE 23



When the buffer i1s full

Let’s replace
receive(ANY, &m);
with

if (bufcount < NBUF)
receive(ANY, &m);

else
receive (INTERRUPT, &m);

When the buffer is full, we just stop accepting
requests until it has emptied a bit.

- UNIVERSITY OF Department of Michael Spivey
L AN COMPUTER SCIENCE o4



Omitted here ...

Lab 4 has a more elaborate serial driver

» Supports both output and input with echoing
and line editing.

 All UART initialisation details are filled in.

* There's an alternative interface print_buf
that overcomes the one-message-per-
character bottleneck.

Fes) UNIVERSITY OF Department of Michael Spivey

S AUIYINE COMPUTER SCIENCE 2



The standard interrupt handler

void default_handler(void) {
int irqg = active_irq();
int task = os_handler[irq];
disable_irq(irq);
interrupt(task);

GasXy UNIVERSITY OF Department of Michael Spivey
AN COMPUTER SCIENCE 2



Implementing
Processes

Mike Spivey
Hilary Term 2022

5] Department of
el COMPUTER

UNIVERSITY OF

e i) OCIENCE

Copyright © 2020-22 J. M. Spivey



Concurrent processes

We want multiple processes, each with its own
stack. For simplicity,

» A fixed set of processes, created at the start.

» Each process has a fixed amount of stack
space.

GasXy UNIVERSITY OF Department of Michael Spivey
AN COMPUTER SCIENCE 28



Implementing processes

The plan:

* Enter the OS via a software interrupt
instruction svc, or by a normal interrupt

» Save the entire processor state on the stack

» After choosing a new process, restore its state
to continue.

Made easier by having a separate stack for the
operating system.

Michael Spivey

Gas UNIVERSITY OF Department O]c

S AUIYINE COMPUTER SCIENCE 2



Context switch — part 1

V . o i RS DO SRR RS S S PR PSRRI A M A

e

1. Function send executes
an svc instruction

PSP

2. The hardware saves
some state, switches to
the main stack, and
invokes the SVC handler

Ss9ssalppe buisesalou)

Process stack A Main OS stack

) Michael Spive
) UNIVERSITY OF Department O]c bivey

= OO QLI IDE \\PUTER SCIENCE 30



Context part2

SRR I NIE I

=]
O
-
)
Q)
\,
msp S
Q
Q)
o
o
-
s 5
psp \ %
g " 4. Then the SVC handler 5
3. The SVC handler :
calls the operating
saves more state
system kernel
Process stack A Main OS stack
é’ UNIVERSITY OF Department of Michael Spivey

== 0) QUOINDE ~\\PUTER SCIENCE 31



parts

msp

| 5.The operating system

can call internal subroutines

Main OS stack

w,
> ﬂ -
2 O,

== 0) QUOINDE ~\\PUTER SCIENCE

Ss9ssalppe buisesalou)

S50 UNIVERSITY OF Department of Michael Spivey

32



Context switch —partd

SRR I NIE I

S

O

D

)

T

msp S5

Q

Q)

o

o

-3

psp B

- %)

6. The OS selects a new D
process and passes its
sp to the SVC handler

Main OS stack Process stack B
é’ UNIVERSITY OF Department of Michael Spivey

= OO QLI IDE \\PUTER SCIENCE 33



Context switch — part 5

SRR IENNSIIE I A e A S e O s e e I P IR e s e

=)
msp %
Q)
23
>
Q
Q)
psp o
o
-
0)
n
n
7. The SVC handler o
restores some state.
Main OS stack Process stack B
Gga) UNIVERSITY OF Department of Michael Spivey

2O CUOINDE O\ \PUTER SCIENCE 34



Context switch — part 6

msp—>

PSP

‘\

Ss9ssalppe buisesalou)

s )
8. The interrupt return
mechanism resumes

process B
———

Main OS stack Process stack B

Fe) UNIVERSITY OF Department of Michael Spivey

2 MO GAONE 1)\ \PUTER SCIENCE 35



System calls — client side

void NOINLINE yield(void) {
syscall(SYS_YIELD);

}

void NOINLINE send(int dest, int type,
message *msg) {
syscall(SYS_SEND) ;

e
OS will find arguments in\

registers ré-r2

Y,
s N
Generates an svc
Instruction
G UNIVERSITY OF Department of Michael Spivey

=A@ QUOINDE —()\\PUTER SCIENCE 36



Implementing the SVC handler

svc_handler:
1save @ Complete saving of state

@@ Argument in r@ is sp of old process
bl system_call @ Perform system call

@@ Result in r@ is sp of new process
1restore @ Restore saved state

(inmpx-m@. s)

Michael Spivey

@) UNIVERSITY OF Department of

S AUIYINE COMPUTER SCIENCE >



Saving the state

@@@ isave -- save context for system call
.macro isave
mrs r@, psp @ Get thread stack pointer
subs ro, #36
movs r1, ro@
mov r3, 1r @ Preserve magic value
stm r1!, {r3-r7} @ Save low regs on thread stack
mov r4, r8 @ Copy from high to low

mov r5, r9

mov r6, r10@

mov r/, ri1

stm r1!, {rd4-r7} @ Save high regs on thread stack
.endm @ Return new thread sp

£4) UNIVERSITY OF Department of Michael Spivey

=0 AGQINIE ~()\\PUTER SCIENCE 38



System calls — OS side

unsigned *system_call(unsigned #*psp) {

short *pc = (short *) psp[PC_SAVE];

int op = pc[-1] & Oxff;
os_current->sp = psp;

switch (op) {
case SYS_YIELD:

make_ready(os_current) ;
choose_proc();
break;

}

return os_current->sp,

G2 UNIVERSITY OF Department of
AU COMPUTER SCIENCE

Michael Spivey
39



Completing the story

Two details remain:
* How to start a process.

* How to start the entire operating system.

SR UNIVERSITY OF Department of Michael Spivey
MO QACINDE ~)\\PUTER SCIENCE 40



Starting a process

The first time a process runs, it is resumed just as
iIf returning from a system call.

So we set up a fake exception frame that invokes
the process body when resumed.

* r0@ =integer argument,
* pc = process body,

* 1r =address of exit stub, in case body
returns.

Fe UNIVERSITY OF Department of Michael Spivey

S AUIYINE COMPUTER SCIENCE a



Starting the system

After creating all the processes that make up the program,
the main program becomes the idle process.

void __start(void) {
/* Create idle process */

/* Call the application's setup function =*/
init();

/* The main program morphs into the idle process. */
os_current = idle_proc;

set_stack(os_current->sp);

idle_task();

£4) UNIVERSITY OF Department of Michael Spivey

= MO QUOINDE )\ \PUTER SCIENCE 42



The 1dle process

Having an idle process saves us from ever having
no process to run.

/* idle_task -- body of the idle process */
void idle_task(void) A

/* Pick a genuine process to run */
yield();

/* When there's nothing to do: */
while (1) pause();

».u UNIVERSITY OF Department of Michael Spivey

L= 0)QUOINDE O\ \PUTER SCIENCE 43



In conclusion

By saving the state of all registers on the stack, the
context switch mechanism can suspend a process
so that it can be resumed later.

There's always some machine-dependent intricacy
to this, but the outline is usually the same.

We have separated the mechanism of context
switch from the policy decisions about what
process should run when.

G UNIVERSITY OF Department of Michael Spivey
eI COMPUTER SCIENCE 14



Scheduling and
Messages

Mike Spivey
Hilary Term 2022

5] Department of
el COMPUTER

UNIVERSITY OF

e i) OCIENCE

Copyright © 2020-22 J. M. Spivey



Inside the kernel

For simplicity, the kernel of the operating system
cannot be interrupted.

* So we can deal with one interrupt or system
call at a time.

* |'ll describe the internal data structures as a
guide to what the kernel does.

G UNIVERSITY OF Department of Michael Spivey
AN COMPUTER SCIENCE 16



Process states

Each process is one of
* ACTIVE - running or ready to run.

* SENDING, RECEIVING - waiting to exchange
a message.

 IDLING - theidle process.
* DEAD - after exiting.

Each process can be on at most one queue.

G UNIVERSITY OF Department of Michael Spivey
eI COMPUTER SCIENCE 47



The process table

struct _proc {
int pid; //
char name[16]; //

unsigned state; //
unsigned *sp; //
int priority; //
proc waiting; //
int pending; //
int msgtype; //
message *msgbuf; //

proc next; //

G UNIVERSITY OF Department of

Process ID

Name for debugging
SENDING, RECEIVING, etc.
Saved stack pointer
Priority: 6 1is highest

Processes waiting to send
Whether interrupt pending
Message to send or receive
Pointer to message buffer

Next process 1n queue

Michael Spivey

=X 0) GO PW ~\\PUTER SCIENCE 48



Process priorities

0: Device drivers.
1: Normal processes, high priority.
2: Normal processes, default priority.

3: The idle process.

* When should a normal process be given high
priority?

G UNIVERSITY OF Department of Michael Spivey
eI COMPUTER SCIENCE 49



Implementation: ready queues

0: | ¢ .// Jp T UActivelg

%Adi\\/@mﬁive Q
2: 18|
. [Idling Q

»_u UNIVERSITY OF Department of
2@ O CLOINDY )\\PUTER SCIENCE 50

Priority levels

Michael Spivey



Pre-emptive scheduling

micro:bian is pre-emptive: a process can be
suspended involuntarily (for example on interrupt),

or when it calls send () or receive().

Scheduling is not time-based: there is no attempt
to share time equally between ready processes.

A process can call yield() voluntarily, but this is
rarely necessary.

You can run a timer task if you like, but it is not
compulsory.

Fes) UNIVERSITY OF Department of Michael Spivey

2 O).QUONNDN ~(\/\PUTER SCIENCE 51



Rendezvous principle

Two processes must both arrive at send () and
receive( ) for a message to be passed.

* SO0 some processes are waiting to receive —
not on any queue.

» Others are waiting to send to a specific
receiver — on a queue for that receiver.

NGNS Department of Michael Spivey
MO QACINDE ~)\\PUTER SCIENCE £



Sending queues

Each process has a queue of
others waiting to send to it.

[Sending

{Active

a/\‘[Sendin Sendin
/ .

k—/lSendmg

[Rcving @ [Rcving Q/\‘[Sending

M UNIVERSITY OF

Department of

A O CUOINDE )\ \PUTER SCIENCE

Michael Spivey
53



Story of a system call

unsigned *system_call(unsigned *psp) {
short *pc = (short *) psp[PC_SAVE];
int op = pc[-1] & Oxff;

os_current->sp = psp;

switch (op) {
case SYS_SEND:
mini_send(arg(®, int), arg(1, int),
arg(2, message *));
break;

}

return os_current->sp,;

£4) UNIVERSITY OF Department of Michael Spivey

L= O)QUOINDE ~)\\PUTER SCIENCE £



Implementing send

static void mini_send(int dest, int type,
message *msg) {
int src = os_current->pid;
proc pdest = os_ptable[dest];

if (accept(pdest, type)) { // Receiver is waiting
deliver(pdest->msgbuf, src, msg);
make_ready(pdest); make_ready(os_current);

} else { // Sender joins the receiver's queue
set_state(os_current, SENDING, type, msgqg);
enqueue(pdest) ;

}

choose_proc();

SR UNIVERSITY OF Department of Michael Spivey

=A@ QUOINDE —()\\PUTER SCIENCE 55



Choosing the next process

static inline void choose_proc(void) {
for (int p = 0; p < NPRIO; p++) {
queue q = &os_readyqlp];

if (g->head !'= NULL) {
os_current = g->head;
q->head = os_current->next;
return;

}

os_current = idle_proc;

UNIVERSITY OF Department of
LZH OO NDR ()\\PUTER SCIENCE

Michael Spivey
56



Implementing receive

static void mini_receive(int type, message *msg) {
if (os_current->pending // Is an interrupt due?
&& (type == ANY || type == INTERRUPT)) {
os_current->pending = 0;
deliver(msg, HARDWARE, INTERRUPT, NULL);

} else {
proc psrc = find_sender(os_current, type);
if (psrc !'= NULL) A // Is a sender waiting?

deliver(msg, psrc->pid, psrc->msgbuf);
make_ready(os_current); make_ready(psrc);
} else { // No luck: we must wait
set_state(os_current, RECEIVING, type, msgqg);
}

choose_proc();

Fes) UNIVERSITY OF Department of Michael Spivey

S AUIYINE COMPUTER SCIENCE >/



Joining the queue

static inline void enqueue(proc pdest) A

os_current->next = NULL;
if (pdest->waiting == NULL)

pdest->waiting = os_current;
else {

proc r = pdest->waiting;

while (r->next != NULL)

r = r->next;
r->next = os_current;

Fe UNIVERSITY OF Department of Michael Spivey
BSOS COMPUTER SCIENCE 58



Implementing a
device driver

Mike Spivey
Hilary Term 2022

5] Department of
el COMPUTER

UNIVERSITY OF

e i) OCIENCE

Copyright © 2020-22 J. M. Spivey



A temperature sensor

The Nordic chip has a temperature sensor on the
processor die. We will implement

int temp_reading(void)
Use a device driver process

* 10 manage concurrent access,

* to allow connecting to interrupts.

NGNS Department of Michael Spivey
MO QACINDE ~)\\PUTER SCIENCE 60



Hardware reqgisters

There's a device TEMP (address 0x4000C000) with
* A task START (offset 0x000) to start a reading.

* An event DATARDY (offset 0x100) that signals
the reading is ready.

* Aregister INTEN (offset 0x300) where we can
enable an interrupt on DATARDY.

* Aregister TEMP (offset 0x508) where the
reading appears.

G UNIVERSITY OF Department of Michael Spivey
eI COMPUTER SCIENCE 61



Describing the hardware

In hardware . h:

/* Temperature sensor */
_DEVICE _temp {

_REGISTER(unsigned START, 0x000); /* Task */
_REGISTER(unsigned DATARDY, ©0x100); /* Event */
_REGISTER(unsigned INTEN, ©0x300); /* Registers */
_REGISTER(unsigned VALUE, ©x508);

'

/* Interrupts */
#define TEMP_INT_DATARDY 6

#define TEMP (* (volatile _DEVICE _temp *) 0x4000c000)

GasXy UNIVERSITY OF Department of Michael Spivey
eI COMPUTER SCIENCE 62



In assembly language

An assignment like

temp = TEMP.VALUE

becomes

ldr r@, =0x4000c5068
1dr r6, [rO]

and that's all that matters.

G2 UNIVERSITY OF Department of
AU COMPUTER SCIENCE

Michael Spivey
63



TEMP.INTEN = BIT(TEMP_INT_DATARDY) ;
connect(TEMP_IRQ);
enable_irq(TEMP_IRQ); connect (TEMP_IRQ)

\ L <

short for
\NVIC.ISER = BIT(12)j

_~TEMP .INTEN = enable_irq(TEMP_IRQ)
BIT(TEMP_INT_DATARDY) )

NG Department of Michael Spivey
IOINDR ~O\|PUTER SCIENCE 64



The driver process

static void temp_task(int arg) {
message m;
int temp, client;

TEMP.INTEN = BIT(TEMP_INT_DATARDY) ;
connect(TEMP_IRQ) ;
enable_irq(TEMP_IRQ);

server loop

SR UNIVERSITY OF Department of Michael Spivey

=A@ QUOINDE —()\\PUTER SCIENCE 65



The server loop

while (1) A
receive(ANY, &m);
switch (m.type) {
case REQUEST:
client = m.sender;

. take a reading

m.int1 = temp;
send(client, REPLY, &m);
break;

default:
badmesg(m.type);

£%2y UNIVERSITY OF Department of Michael Spivey

S AUIYINE COMPUTER SCIENCE °0



Taking a reading

TEMP.START = 1;
receive(INTERRUPT, NULL);
assert(TEMP.DATARDY) ;
temp = TEMP.VALUE;

TEMP.DATARDY = 0;
clear_pending(TEMP_IRQ) ;
enable_irq(TEMP_IRQ);

* onerequest at a time, so we can stop to wait
for the interrupt.

GER) UNIVERSITY OF Department of Michael Spivey

=A@ QUOINDE —()\\PUTER SCIENCE 67



A client subroutine

int temp_reading(void) {
message m;

sendrec(TEMP_TASK, RﬁQUEST, &m) ;
return m.m_1int1;

e N
short for

send(TEMP_TASK, REQUEST, &m);

receive(REPLY, &m);
_ Y,

G UNIVERSITY OF Department of Michael Spivey
AN COMPUTER SCIENCE 68



Why sendrec()?

* It's a handy abbreviation.

* [t is slightly more efficient — avoids two
context switches.

* [t solves the problem of priority inversion.

SR UNIVERSITY OF Department of Michael Spivey
MO QACINDE ~)\\PUTER SCIENCE 69



Priority inversion

* The server receives a request, takes a reading,
then tries to send the result to a client.

» Meanwhile, the client has been squeezed out
by other processes, and has not run again: it

has yet to reach its receive (REPLY, ...).

* So the (high-priority) server must wait for the
(low-priority) client before continuing.

Solution: use sendrec () so the client promises in
advance to accept the reply.

Fes) UNIVERSITY OF Department of Michael Spivey

S AUIYINE COMPUTER SCIENCE 9



Links

* Concurrent Programming — programs that
exploit parallel processing.

» Concurrency — proving that concurrent
programs e.g. don't suffer from deadlock.

» Compilers — automating the translation into
assembly language.

» Computer Architecture — designing hardware
for performance.

Fe UNIVERSITY OF Department of Michael Spivey
BSOS COMPUTER SCIENCE 7



Next term

* First half: designing combinational and
sequential logic circuits.

» Building a tool-kit of architectural elements.

» Second half: designing a datapath and control
that can execute (some) Thumb instructions.

Michael Spivey

Gas UNIVERSITY OF Department of

L= 0) QUGN ~\\PUTER SCIENCE 79



